[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个…
这个题最暴力的搞法就是这样的: 设 $Dp[i][j]$ 为前 $i$ 个数乘积为 $j$ 的方案数. 转移的话就不多说了哈... 当前复杂度 $O(nm^2)$ 注意到,$M$ 是个质数,就说明 $M$ 有原根并且我们可以很快的求出来. 于是对于 $1\rightarrow M-1$ 中的每一个数都可以表示成原根的某次幂. 于是乘法可以转化为原根的幂的加法, 转移的时候就相当于做多项式乘法了. 我们再注意到,$1004535809 = 479 \times 2^{21} + 1$ 并且是个质数…
Description 传送门 Solution [一] 设 \(f[i][j]\) 表示前 \(i\) 个数的乘积在模 \(p\) 意义下等于 \(j\) 的方案数,有 \[ f[i][j]=\sum_{k=0}^{p-1}f[i-1][k]\cdot h[j\cdot k^{-1}] \] 其中 \(h[i]\) 表示 \(S\) 中模 \(p\) 等于 \(i\) 的元素个数. [二] 设 \(g\) 为模数 \(p\) 的原根,根据原根的性质可知 \(g^1\cdots g^{p-1}\…
3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助: 给定整数x,求所有可以生成出的,且满足数列…
Description 题库链接 给出集合 \(S\) ,元素都是小于 \(M\) 的非负整数.问能够生成出多少个长度为 \(N\) 的数列 \(A\) ,数列中的每个数都属于集合 \(S\) ,并且 \[\prod_{i=1}^N A_i\equiv x \pmod{M}\] 答案对 \(1004535809\) 取模. \(1\leq N\leq 10^9,3\leq M\leq 8000, M 为质数,0\leq x\leq M-1\) Solution 显然能够得到 \(DP\) 的解法…
3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个问题的答案可能很大,因…
4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 653  Solved: 320 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T行,每行有一个数字,表示你所求出的答案对106+3…
题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). \(n\leq10^9,3\leq m\leq 8000且m是质数,1\leq x\leq m-1\). \(Solution\) 令\(f_{i,j}\)表示当前选了\(i\)个数,乘积模\(m\)为\(j\)的方案数,\(g_i=[i\in S]\). 转移就是,\[f_{i,a*b\%m}=…
还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0,和其他数规则不相符,所以不考虑(答案也没让求) 然后看原根的性质,设g是M的原根,那么\( g^i%M 0<=i<M-1 \)就是1~M-1的不重集合,所以可以把乘法变成原根指数的加法,这样就变成多项式乘法了,可以用NTT优化 然后n非常大,所以使用快速幂进行多项式乘法 #include<…
1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3438  Solved: 1171[Submit][Status][Discuss] Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm).那么就称P为S的一个上升序列.如果有多…
题目链接:BZOJ - 1046 题目分析 先倒着做最长下降子序列,求出 f[i],即以 i 为起点向后的最长上升子序列长度. 注意题目要求的是 xi 的字典序最小,不是数值! 如果输入的 l 大于最长上升子序列长度,输出 Impossible. 否则,从 1 向 n 枚举,贪心,如果 f[i] >= l,就选取 a[i],同时 --l,然后继续向后找比 a[i] 大的第一个数判断是否 f[i] >= l (这时l已经减小了1). 代码 #include <iostream> #i…
Description Alice想要得到一个长度为 \(n\) 的序列,序列中的数都是不超过 \(m\) 的正整数,而且这 \(n\) 个数的和是 \(p\) 的倍数. Alice还希望,这 \(n\) 个数中,至少有一个数是质数. Alice想知道,有多少个序列满足她的要求. Input 一行三个数,\(n,m,p\). Output 一行一个数,满足Alice的要求的序列数量,答案对 \(20170408\) 取模. Sample Input 3 5 3 Sample Output 33…
[Lydsy1704月赛]序列操作 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 203  Solved: 69[Submit][Status][Discuss] Description 给定一个长度为 n 的非负整数序列 a_1,a_2,...a_n .你可以使用一种操作:选择在序列中连续的两个正整数, 并使它们分别减一.当你不能继续操作时游戏结束,而你的得分等于你使用的操作次数.你的任务是计算可能的最小 得分和最大得分.   Input 第一行…
先从后到前做一个最长下降子序列的dp,记录f[i],我这里用的是二分(其实树状数组比较显然) 然后对于询问,超出最长上升子序列的直接输出:否则从前到后扫,f[i]>=x&&a[i]>la(上个选的)就选,因为这时第一个出现的一定是符合条件的中最小的最小的 #include<iostream> #include<cstdio> using namespace std; const int N=10005; int n,a[N],m,x,f[N],p[N],…
题目: 洛谷3321 分析: 一个转化思路比较神(典型?)的题-- 一个比较显然的\(O(n^3)\)暴力是用\(f[i][j]\)表示选了\(i\)个数,当前积在模\(m\)意义下为\(j\)的方案数,每次转移枚举\(S\)的元素,即(\(k^{-1}\)表示\(k\)在模\(m\)意义下的逆元): \[f[i][j]=\sum_{k\in S} f[i-1][jk^{-1}]\] 事实上写的时候通常是从\(f[i][j]\)往\(f[i+1][jk]\)贡献 然后通过Orz题解发现那个乘法\…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 一开始想到了树形DP,处理一下子树中的最小值,向上的最小值,以及子树中的最长路和向上的最长路,就可以得到答案,可以DP: 然而写着写着写不下去了,不会求向上最小值和最长路: 于是看看TJ,原来要再记录一个次长路! 然而写挫了,写不下去了... #include<iostream> #include<cstdio> #include<cstring> #inc…
这个题哎呀...细节超级多... 首先,我猜了一个结论.如果有一种排序方案是可行的,假设这个方案是 $S$ . 那么我们把 $S$ 给任意重新排列之后,也必然可以构造出一组合法方案来. 于是我们就可以 $O(2^n)$ 枚举每个操作进不进行,再去判断,如果可行就 $ans$ += $|S|!$. 然而怎么判断呢? 我们按照操作种类从小到大操作. 假设我们现在在决策第 $i$ 种操作并且保证之前之后不需要进行种类编号 $< i$ 的操作. 那么我们只考虑那些位置在 $2^i+1$ 的位置的那些数.…
首先我们可以二分答案. 假设当前二分出来的答案是 $Ans$ ,那么我们考虑用网络流检验: 设武器为 $X$,第 $i$ 个武器的攻击力为 $B_i$: 设机器人为 $Y$,第 $i$ 个机器人的装甲为 $A_i$: 设 $Map[i][j]$ 表示第 $i$ 个机器人是否能攻击第 $j$ 号机器人. 设源为 $S$,汇为 $T$,现在考虑连边: $S\rightarrow X_i$,容量为 $Ans * B_i$: $Y_i\rightarrow T$,容量为 $A_i$: $\forall…
第一问明显就是用b[i]=a[i]-i来做最长不下降子序列 然后第二问,对于一对f[i]=f[j]+1的(i,j),中间的数一定要改的,并且是等于b[i]或者b[j],我不会证,然后因为是随机数据,所以直接枚举断点用前缀和更新答案即可 证明见http://ydcydcy1.blog.163.com/blog/static/216089040201392851210681/ #include<iostream> #include<cstdio> #include<cstring…
题面 传送门 分析 考虑容斥原理,用总的方案数-不含质数的方案数 设\(dp1[i][j]\)表示前i个数,和取模p为j的方案数, \(dp2[i][j]\)表示前i个数,和取模p为j的方案数,且所有的数均不为质数 [1,m]中的质数可以线性筛出 则\(dp1[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p],j \in [0,p-1],k \in [0,m]\) \(dp2[i][j]=dp1[i-1][((j-k) \mod p+p)\mod p],j \in […
传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m−1]之间,mmm是一个质数,求满足全部由这个集合里的组成且长度为nnn且所有数之积与xxx在模mmm意义下相同的数列总数. 思路:对a1,a2,..,as,xa_1,a_2,..,a_s,xa1​,a2​,..,as​,x全部化成gb1,gb2,...gbs,gyg^{b_1},g^{b_2},..…
[SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). Solution 首先很容易写出一个dp. \(dp_{i,j}\)数列长度为i,乘积为j的方案数. 这么做是\(O(nm^2)\)的. 所以我们肯定要搞点事情,把n变成logn. 这个数列显然是满足结合律的,并且每次的转移都相同. 于是可以写一个快速幂,把n降为logn. 注意到乘积不太好维护,…
3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助: 给定整数x,求所有可以生成出的,且满足数…
3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中…
题目链接:序列统计 我来复习板子了……这道题也是我写的第一发求原根啊? 求原根方法: 从小到大依次枚举原根.设当前枚举的原根为\(x\),模数为\(p\),\(p-1\)的质因数分别为\(p_1,p_2,\dots,p_m\),则只需检验\(x^{\frac{p-1}{p_i}}\equiv1 \pmod{p}\)是否成立即可.如果成立则\(x\)不是原根. 然后这道题朴素\(dp\)就不讲了.设\(m\)的原根为\(g\),那么把每个数表示成\(g^k\)的形式就可以乘法变加法了,就成为了\(…
3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中…
BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. 我们发现每一次的转移都是一样的. 假设没有第三维\(0/1\),那如果拿DP数组\(f[i]\)和\(f[i]\)组合,得到的就是\(f[2\times i]\)(\(i\)次DP后的结果与\(i\)次DP后的结果组合,就是\(2\times i\)次DP后的结果).所以有:\(f[2\times…
3992: [SDOI2015]序列统计 链接 分析: 给定一个集和s,求多少个长度为n的序列,满足序列中每个数都属于s,并且所有数的乘积模m等于x. 设$f=\sum\limits_{i=0}^{n - 1} a_i x ^ i \ \ 如果集合中存在i,a_i = 1$ 那么答案的生成函数为f自乘n次,这里可以快速幂.这里"乘法"定义是:设多项式a乘多项式b等于c,$\sum\limits_{k=0}^{n - 1} c_k = \sum\limits_{i \times j =…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…
题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[j]<=minv[i]&&maxv[j]<=a[i])//序列只会变换一次 dp[i]=max{dp[j]+1}; 转移要满足两个条件:\(a[j]<=minv[i]\ \&\&\ maxv[j]<=a[i]\) 一个二维偏序问题,CDQ.树套树都可以.…