原文链接:GraphX中Pregel单源点最短路径 GraphX中的单源点最短路径例子,使用的是类Pregel的方式. 核心部分是三个函数: 1.节点处理消息的函数  vprog: (VertexId, VD, A) => VD (节点id,节点属性,消息) => 节点属性 2.节点发送消息的函数 sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId,A)]   (边元组) => Iterator[(目标节点id,消息)] 3.消息合…
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些.但是,原始的Bellman-Ford算法时间复杂度为O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的<算法导论>也只介绍了基本的Bellm…
在带权图(网)里,点A到点B所有路径中边的权值之和为最短的那一条路径,称为A,B两点之间的最短路径;并称路径上的第一个顶点为源点(Source),最后一个顶点为终点(Destination).在无权图中,最短路径则是两点之间经历的边数最少的路径.实际上,只要把无权图上的每条边都看成是权值为1的边,那么无权图和带权图的最短路径是一致的.    给定一个带权有向图G=(V,E),指定图G中的某一个顶点的V为源点,求出从V到其他各顶点之间的最短路径,这个问题称为单源点最短路径问题.    迪杰斯特拉(…
学习参考: Dijkstra算法(单源最短路径) 最短路径—Dijkstra算法和Floyd算法 使用的图结构: 邻接矩阵: -1 20 -1 25 80-1 -1 40 -1 -1-1 -1 -1 -1 10-1 -1 20 -1 50-1 -1 -1 -1 -1 代码: void Dijkstra(){//单源点最短路径 int i,j; boolean s[]=new boolean[vexnum]; int dist[]=new int[vexnum]; int prev[]=new i…
迪杰斯特拉(Dijkstra)算法 是求从某个源点到其余各顶点的最短路径,即对已知图 G=(V,E),给定源顶点 s∈V,找出 s 到图中其它各顶点的最短路径. 我总结下核心算法,伪代码如下: Dijkstra() { 初始化Dist.Path.final // 每次求得v0到某顶点v的最短路径 ) { . 找到非最短路径顶点集中距V0最近的顶点v 得到其顶点下标和距离 将v加入到最短距离顶点集合中 打印相关内容 . 依次修改其它未得到最短路径顶点的Dist[k]值 假设求得最短路径的顶点为u,…
单源最短路径问题:给定一个带权有向图 G = (V, E), 其中每条边的权是一个实数.另外,还给定 V 中的一个顶点,称为源.现在要计算从源到其他所有各顶点的最短路径长度.这里的长度是指路上各边权之和.这个问题通常称为单源最短路径问题. Dijkstra算法: 一:基本算法 将图 G 中所有的顶点 V 分成两个顶点集合 VA 和 VB.如果源点 S 到 u 的最短路径已经确定,则点 u 属于集合 VA ,否则属于集合  VB.最开始的时候 VA 只包含源点 S,其余的点属于 VB,算法结束时所…
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Lester Ford 分别发表于 1958 年和 1956 年,而实际上 Edward F. Moore 也在 1957 年发布了相同的算法,因此,此算法也常被称为 Bellman-Ford-Moore 算法. Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法.对于带权有向…
Dijkstra算法树解决有向图G=(V,E)上带权的单源最短路径问题,但是要求所有边的权值非负. 解题思路: V表示有向图的所有顶点集合,S表示那么一些顶点结合,从源点s到该集合中的顶点的最终最短路径的权值(程序中用dist[i]表示)已经确定.算法反复选择具有最短路径估计的顶点u 属于 V-S(即未确定最短路径的点,程序中finish[i]=false的点),并将u加入到S中(用finish[i]=true表示),最后对u的所有输出边进行松弛. 程序实现:      输入数据: 5 7 0…
Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessi…
dijkstra算法与prim算法的区别   1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的点集合A,另一个集合为未加入生成树的点B,它的具体实现过程是: 第1步:所有的点都在集合B中,A集合为空. 第2步:任意以一个点为开始,把这个初始点加入集合A中,从集合B中减去这个点(代码实现很简单,也就是设置一个标示数组,为false表示这个点在B中,为true表示这个点在A中),寻找与它相邻的点…
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径的权值均已确定.算法反复选择具有最短路径估计的顶点u,并将u加入到S中,对u 的所有出边进行松弛.如果可以经过u来改进到顶点v的最短路径的话,就对顶点v的估计值进行更新. 如上图,u为源点,顶点全加入到优先队列中. ,队列中最小值为u(值为0),u出队列,对u的出边进行松弛(x.v.w),队列最小值…
做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么(Vi...Vk)也必然是从i到k的最短路径.Dijkstra是以最短路径长度递增,逐次生成最短路径的算法.比如:对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+cost[i][j]}.如…
学习一个点到其余各个顶点的最短路径--单源最短路径 Dijkstra算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题. 迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法的基本思想: 每次找到离源点最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径. 算法基本步骤如下: 1.将所有顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集…
欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 算法的原理 以源点开始,以源点相连的顶点作为向外延伸的顶点,在所有这些向外延伸的顶点中选择距源点最近的顶点继续向四周延伸(某个顶点被选作继续延伸的顶点,则源点到它的最短距离就已经确定,我们也不再将其视为向外延伸的顶点了),如果在继续延伸的过程中遇到了之前已延伸到的顶点,且当前这次延伸过程使其离源点更近,我们就修正这个距离,直到所有的顶点都被视为继续延伸的顶点,此时我们就得到了源点…
序 求最短路径的算法有很多,各有优劣. 比如Dijkstra(及其堆(STL-priority_queue)优化),但是无法处理负环的情况: 比如O(n^3)的Floyd算法:比如Bellman-Ford算法,可以处理负环的情况. SPFA算法就是基于Bellman-Ford算法的改进. SPFA,全称为Shortest Path Faster Algorithm,也被很多Oler笑称为Super Fast Algorithm. 无可否认的是,SPFA的效率的确很高. 逻辑与思路 SPFA的核心…
本文记录一下dijkstra算法的实现,图用邻接矩阵表示,假设图为无向图.而且连通,有向图,不连通图的做法相似. 算法简述: 首先确定"单源"的源.假设是第0个顶点. 维护三个数组dist[], color[], path[].设其下标分别为0-i-n-1: dist[] 表示源点到顶点i的最短距离,在初始化时,假设源点到顶点i有路径,则初始化为路径的权重.否则初始化为INT_MAX. color[] 数组事实上表示两个集合,即color[i]值为1的集合表示已经确定最短路径的点的集合…
Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到各顶点的最短路径的算法思想是:对有n个顶点的有向连通网络G=(V, E),首先从V中取出源点u0放入最短路径顶点集合U中,这时的最短路径网络S=({u0}, {}); 然后从uU和vV-U中找一条代价最小的边(u*, v*)加入到S中去,此时S=({u0, v*}, {(u0, v*)}).每…
单源最短路径指的是从一个顶点到其它顶点的具有最小权值的路径.我们之前提到的广度优先搜索算法就是一种无权图上执行的最短路径算法,即在所有的边都具有单位权值的图的一种算法.单源最短路径算法可以解决图中任意顶点间的最短路径. 对于单源最短路径问题,一般有两种经典解法:1.对于有权值为负的图,采用Bellman-Ford算法:2.对于权值全为正的图,常采用Dijkstra算法.本文介绍Bellman-Ford算法,下一篇介绍Dijkstra算法. Bellman-Ford算法适用于权值可以为负.无权值为…
题目简介:给定一个带权有向图,再给定图中一个顶点(源点),求该点到其他所有点的最短距离,称为单源最短路径问题. 如下图,求点1到其他各点的最短距离 准备工作:以下为该题所需要用到的数据 int N; //保存顶点个数 int M; //保存边个数 int max; //用来设定一个比所有边的权都大的值,来表示两点间没有连线 int[] visit; //找到一个顶点的最短距离,就把它设为1,默认为0(即还没有找到) int[][] distance; //保存图中个边的值,两点间无边则设为max…
算法思想 ①从一个源点开始,找距离它最近的点顶点v ②然后以顶点v为起点,去找v能到达的顶点w,即v的邻居 比较源点直接到 v的距离和(源点到v的距离+v到w的距离) 若大于后者则更新源点的到w的开销 ③然后去掉这个顶点v,去寻找下一个到距离源点最近的顶点重复② 最后更新完所有顶点 算法思路 1.用邻接表或者一个二维数组(邻接矩阵)来存储图 2.设置dist存储到源点的最短距离 known标记顶点是被处理 path记录路径(到达该顶点的上一个顶点) 3.这步的实现和算法思想中描述的一样 4.递归…
文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两顶点最短带权路径的问题. 单源点的最短路径问题: 给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径.迪杰斯特拉(Dijkstra)提出了一个按路径长度递增的次序产生最短路径的算法.迪杰斯特拉(Dijkstra)算法描述如下: 示意图 算法分析 结合代码实现部分分析这个算法的运行时间.本博客…
哈夫曼编码与哈夫曼算法 哈弗曼编码的目的是,如何用更短的bit来编码数据. 通过变长编码压缩编码长度.我们知道普通的编码都是定长的,比如常用的ASCII编码,每个字符都是8个bit.但在很多情况下,数据文件中的字符出现的概率是不均匀的,比如在一篇英语文章中,字母“E”出现的频率最高,“Z”最低,这时我们可以使用不定长的bit编码,频率高的字母用比较短的编码表示,频率低的字母用长的编码表示. 但这就要求编码要符合“前缀编码”的要求,即较短的编码不能是任何较长的编码的前缀,这样解析的时候才不会混淆.…
Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之和为最小的路径. 迪杰斯特拉算法不能处理权值为负数或为零的边,因为本质上它是一种贪心算法,出现了负数意味着它可能会舍弃一条正确的边,而选择一个长边和一个负数边,因为长边和负数边的权值之和可能小于那条正确的边. 算法描述 它的过程也很简单,按照广度遍历的方式考察每一条有向边(v,w),如果可以对边进行…
2017-07-27  08:58:08 writer:pprp 参考书目:张新华的<算法竞赛宝典> Bellman-Ford算法是求有向图单源最短路径的,dijkstra算法的条件是图中任意一条边的权都是正的:BF算法可以解决存在负边权的图; 算法流程分为三个部分: 初始化,将除源点外的所有顶点的最短距离的估计值D[i] = +无穷,D[sourse] = 0; 迭代求解:反复对每条边进行松弛操作,使得每个顶点的最短距离D[i]估计值主讲逼近其最短距离:运行n-1次 检验负权回路:通过松弛操…
图的相关算法也算是自己的一个软肋了,当年没选修图论也是一大遗憾. 图像处理中,也有使用图论算法作为基础的相关算法,比如图割,这个算法就需要求最大流.最小割.所以熟悉一下图论算法对于图像处理还是很有帮助的. Dijkstra和Bellman-Ford类似,都是解决单源最短路径问题,不同的是这个方法只能解决边为非负的问题,实现的好的Dijkstra算法运行时间要快于Bellman-ford. 算法步骤如下: 1.首先设置队列,所有节点入列,源节点值为0,其他节点值为无穷. 2.然后在队列中找值最小的…
该算法可以用来解决一般(边的权值为负)的单源最短路径问题,而dijkstra只能解决权值非负的情况. 此算法使用松弛技术,对每一个顶点,逐步减少源到该顶点的路径的估计值,直到达到最短的路径. 算法运算结果: matlab代码如下,netplot函数在这里,不过当时函数中表示两节点没有路径用的是0,而现在需要改成inf: clear all;close all;clc %初始化邻接压缩表 b=[ ; ; ; -; -; -; ; ; ]; m=max(max(b(:,:))); %压缩表中最大值就…
SPFA(Shortest Path Faster Algorithm): 一:基本算法 在求解单源最短路径的时候,最经典的是 Dijkstra 算法,但是这个算法对于含有负权的图就无能为力了,而 Bellman - Ford 算法的复杂度又过于高,这时 SPFA就应运而生了. SPFA 在 Bellman - Ford 算法的基础上进行了改进,使其能够在计算带有负权的图的单源最短路径的基础上,时间复杂度大幅降低. 众所周知 Bellman -Ford 算法会对每条边进行 n - 1 次检查,但…
题目链接:http://poj.org/problem?id=2387 Dijkstra算法: //求某一点(源点)到另一点的最短路,算法其实也和源点到所有点的时间复杂度一样,O(n^2); 图G(V,E),设置一个顶点集合S,不断贪心选择,指导S扩充为V,计算结束. 贪心选择的方法:节点个数n,源节点v,先在S中加入源节点v,初始化源节点,开始扩充S,找到一个点,他离S集合最近,加入到S集合中去,再利用这个点更新S本身中的最短路径. 题目大意:很裸的Dijkstra,但是这里有两点 1.图是双…
P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三个整数Fi.Gi.Wi,分别表示第i条有向边的出发点.目标点和长度. 输出格式: 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i…
[Bellman-Ford算法] [算法]Bellman-Ford算法(单源最短路径问题)(判断负圈) 结构: #define MAX_V 10000 #define MAX_E 50000 int V,E; //顶点和边的数量 struct edge{ int from,to,cost; }; edge es[MAX_E];//边集 int d[MAX_V]; //d[i]表示从某个点出发到i的最短路径 算法特点:1.每次都用所有的边更新所有的边,直到无可更新为止. 2.无负圈最多更新 V-1…