查看spark RDD 各分区内容】的更多相关文章

mapPartitionsWithIndexdef mapPartitionsWithIndex[U](f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false)(implicit arg0: ClassTag[U]): RDD[U] 函数作用同mapPartitions,不过提供了分区的索引(代码中partid). val rdd = sc.parallelize(1 to 8,3)rdd.mapP…
RDD.getNumPartitions()方法可以获得一个RDD分区数量, 1.默认由文件读取的话,本地文件会进行shuffle,hdfs文件默认会按照dfs分片来设定. 2.计算生成后,默认会按照executor-number*executor-cores来分片,也就是spark默认按照总工作核数来对数据分片,而不是工作实例数. RDD.repartitions(n:Int)和RDD.coalesce(n:Int,shuffle : Boolean) 都是对RDD进行重新分区. 源码实现上:…
Spark学习笔记总结 01. Spark基础 1. 介绍 Spark可以用于批处理.交互式查询(Spark SQL).实时流处理(Spark Streaming).机器学习(Spark MLlib)和图计算(GraphX). Spark是MapReduce的替代方案,而且兼容HDFS.Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足. 2. Spark-Shell spark-shell是Spark自带的交互式Shell程序,用户可以在该命令行下用scala编写spark…
[Spark & Hadoop 的分区] Spark 的分区是切片的个数,每个 RDD 都有自己的分区数. Hadoop 的分区指的是 Reduce 的个数,是 Map 过程中对 Key 进行分发的目的地. [指定分区 repartition 和 coalesce] rdd.repartition() 调用的就是 coalesce,始终进行 shuffle 操作. 如果是减少分区,推荐使用 coalesce,可以指定是否进行 shuffle 操作. 通过 coalesce 增加分区时,必须指定…
通过内存创建RDD的分区设置 1.示例代码 在创建RDD的时候,我们可以从内存中进行创建:输出保存为文件.为了演示效果,我们的示例代码如下: import org.apache.spark.{SparkConf, SparkContext} object Spark02RddParallelizeSet { def main(args: Array[String]): Unit = { System.setProperty("hadoop.home.dir", "C:\\Ha…
目录 spark的分区 一. Hash分区 二. Ranger分区 三. 自定义Partitioner 案例 spark的分区 ​ Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数.RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数. 注意 (1)只有Key-Value类型的RDD才有分区器的,非Key-Value类型的RDD,分区器的值是None (2)每个RDD的分区ID范围…
不多说,直接上干货! Pair RDD的分区控制 Pair RDD的分区控制 (1) Spark 中所有的键值对RDD 都可以进行分区控制---自定义分区 (2)自定义分区的好处:  1) 避免数据倾斜 2) 控制task并行度 自定义分区方式 class DomainNamePartitioner(numParts: Int) extends Partitioner { override def numPartitions: Int = numParts override def getPar…
摘要: 1.RDD的五大属性 1.1 partitions(分区) 1.2 partitioner(分区方法) 1.3 dependencies(依赖关系) 1.4 compute(获取分区迭代列表) 1.5 preferedLocations(优先分配节点列表) 2.RDD实现类举例 2.1 MapPartitionsRDD 2.2 ShuffledRDD 2.3 ReliableCheckpointRDD 3.RDD可以嵌套吗? 内容: 1.RDD的五大属性 1.1partitions(分区…
前言 用Spark有一段时间了,但是感觉还是停留在表面,对于Spark的RDD的理解还是停留在概念上,即只知道它是个弹性分布式数据集,其他的一概不知 有点略显惭愧.下面记录下我对RDD的新的理解. 官方介绍  弹性分布式数据集. RDD是只读的.分区记录的集合.RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建. 问题 只要你敢问度娘RDD是什么,包你看到一大片一模一样的答案,都是说这样的概念性的东西,没有任何的价值. 我只想知道 RDD为什么是弹性 而不是 不弹性,…
1. Spark RDD 创建操作 1.1 数据集合   parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism res0: Int = 2 由以上可知,如果第二个参数如果不设置默认为2,默认的并行度最大不超过2.  实例1:读取本地文件创建RDD scala> val rdd1=sc.textFile("file:///usr/local/doc/name1.txt") rdd1: org.…