概念: 配置并行度 动态的改变并行度 流分组策略----Stream Grouping 消息的可靠处理机制 概念: Workers (JVMs): 在一个节点上可以运行一个或多个独立的JVM 进程.一个Topology可以包含一个或多个worker(并行的跑在不同的machine上), 所以worker process就是执行一个topology的子集, 并且worker只能对应于一个topology Executors (threads): 在一个worker JVM进程中运行着多个Java线…
转自:https://my.oschina.net/zc741520/blog/409949 概念: Workers (JVMs): 在一个节点上可以运行一个或多个独立的JVM 进程.一个Topology可以包含一个或多个worker(并行的跑在不同的machine上), 所以worker process就是执行一个topology的子集, 并且worker只能对应于一个topology Executors (threads): 在一个worker JVM进程中运行着多个Java线程.一个exe…
在很多应用场景中,分布式系统的可靠性保障尤其重要.比如电商平台中,客户的购买请求需要可靠处理,不能因为节点故障等原因丢失请求:比如告警系统中,产生的核心告警必须及时完整的知会监控人员,不能因为网络故障而丢失数据. Storm消息可靠性保障是Storm核心特性之一,其中消息树的跟踪管理机制是Storm核心算法之一,本文将详细介绍Storm消息可靠处理机制.我们从Storm初探中的例子入手. 一.消息处理流程 1. Spout节点 (1) Spout接收到一个文本消息: msg1 刘备 关羽 张飞…
概念,见博客 Storm概念学习系列之stream grouping(流分组) Storm的stream grouping的Shuffle Grouping 它是随机分组,随机派发stream里面的tuple,保证polt的每个人物接收到的tuple数目相同.(它能实现较好的负载均衡) 如果工作中没有特殊要求,一般用Shuffle Grouping. 编写StormTopologyShufferGrouping.java package zhouls.bigdata.stormDemo; imp…
前言:阅读笔记 storm和hadoop集群非常像.hadoop执行mr.storm执行topologies. mr和topologies最关键的不同点是:mr执行终于会结束,而topologies永远执行直到你kill. storm集群有两种节点:master和worker. master执行一个后台进程Nimbus,和hadoop的jobtracker相似. Nimbus负责在集群中分发代码.为工作节点分配任务,并监控故障. worker执行一个后台进程Supervisor. supervi…
(一)storm拓扑的并行度可以从以下4个维度进行设置:1.node(服务器):指一个storm集群中的supervisor服务器数量.2.worker(jvm进程):指整个拓扑中worker进程的总数量,这些数量会随机的平均分配到各个node.3.executor(线程):指某个spout或者bolt的总线程数量,这些线程会被随机平均的分配到各个worker.4.task(spout/bolt实例):task是spout和bolt的实例,它们的nextTuple()和execute()方法会被…
1 功能说明 设计一个topology,来实现对文档里面的单词出现的频率进行统计.整个topology分为三个部分: SentenceSpout:数据源,在已知的英文句子中,随机发送一条句子出去. SplitBolt:负责将单行文本记录(句子)切分成单词 CountBolt:负责对单词的频率进行累加 2 代码实现 package com.ntjr.bigdata; import org.apache.storm.Config; import org.apache.storm.LocalClust…
不多说,直接上干货! 对于storm来说,并行度的概念非常重要!大家一定要好好理解和消化. storm的并行度,可以简单的理解为多线程. 如何提高storm的并行度? storm程序主要由spout和bolt组成的.spout和bolt在运行期间会生成task实例(new Spout或者new bolt). 那这些task实例是需要在线程(executor)里面运行的,而线程是需要在进程(worker)里面执行的. 这些,都是可以在代码中控制的到. 1.所以想要提高storm的处理能力,最直接的…
超好资料: 英文:https://github.com/xetorthio/getting-started-with-storm/blob/master/ch03Topologies.asc 中文:http://ifeve.com/getting-started-with-storm-3/ 下面具体讲下:storm的几种groupping 策略的例子 Storm Grouping shuffleGrouping 将流分组定义为混排.这种混排分组意味着来自Spout的输入将混排,或随机分发给此Bo…
作为一名程序员通病就是不安分,对业界的技术总要折腾一番,哪怕在最终实际工作中应用到的就那么一点.最近自己准备入门Storm学习,关于流式大数据框架目前比较流行的有Spark和Storm等,在入门之前,先对两种框架做个基本的对比,便于后期学习中更加深入的理解各自的应用场景以及优劣.关于Storm和Spark的对比主要从网络和书本搜索得到,基本比较如下: 对比方面 Storm Spark Streaming 是否实时模型 纯实时 准实时 实时计算延时度 毫秒级 秒级 吞吐量 低 高 事务机制 支持且…