题解 P1004 方格取数】的更多相关文章

传送门 动态规划Yes? 设i为路径长度,(为什么i这一维可以省掉见下)f[j][k]表示第一个点到了(j,i-j),第二个点到了(k,j-k) 则 int ji=i-j,ki=i-k; f[j][k]=max(f[j][k],f[j-][k-]); f[j][k]=max(f[j][k],f[j-][k]); f[j][k]=max(f[j][k],f[j][k-]); f[j][k]+=s[j][ji]; if(j!=k&&ji!=ki) f[j][k]+=s[k][ki]; 由于只从…
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 某人从图的左上角的\(A\…
---恢复内容开始--- 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . B 某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右…
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 某人从图的左上角的$A$A$点…
P1004 方格取数 思路如下 这题是看洛谷大佬的思路才写出来的,所以我会把大佬的思路展示如下: 1⃣️:我们可以找到一个叫思维dp的东西,dp[i][j][k][l],其中前两维表示一个人从原点出发到(i,j)的路线,而后两维表示:另外一个人从原点出发到(k, l)的路线,通过这个四维的数组,我们就可以暴力的模拟出每个所走的路线. 2⃣️:其次我们思考…
P1004 方格取数 题目描述 设有 \(N\times N\) 的方格图 \((N\leq 20)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 \(0\) .如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 某人从图的左上角的 \…
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .…
网络流大法吼 不想用DP的我选择了用网络流-- 建模方法: 从源点向(1,1)连一条容量为2(走两次),费用为0的边 从(n,n)向汇点连一条容量为2,费用为0的边 每个方格向右边和下边的方格连一条容量为inf,费用为0的边 走到每个方格,会取出方格上的数.每个方格的数只会被取走一次. 于是我们考虑拆点 每个方格向拆出的点连一条容量为1(只能被取走一次),费用为方格上的数的边 由于每个方格不一定只走一次,所以再连一条容量为inf,费用为0的边 然后跑最大费用最大流就行了~ 我的代码中把边上的费用…
这是提高组得一道动态规划题,也是学习y氏思考法的第一道题. 题意为给定一个矩阵,里面存有一些数,你从左上角开始走到右下角,另一个人从右下角开始走到左上角,使得两个人取数之和最大,当然一个数只可以取走一次并且行走规则与采花生一样.开始之前我们把问题进行一下转化,把右下角的人拿到左上角来,也让其往下走.然后我们开始思考1.集合?从(1,1,1,1)到(i,j,i2,j2)的所有路线中的答案:2.属性?最大值 3.集合计算与划分?根据最后原则,除了左上角dp[i,j,i2,j2]是由上上,左左,左上,…
题目链接:https://www.luogu.org/problemnew/show/P1004 标准的DP,不明白为什么有普及+提高的难度 四维DP[i][j][k][l] 表示第一遍走到i,j格子,第二遍走到k,l格子 状态转移方程:max(dp[i-1][j][k-1][l],dp[i-1][j][k][l-1],dp[i][j-1][k-1][l],dp[i][j-1][k][l-1] 每走一步要加上当前格子的数g[i][j]+g[k][l] 注意如果 当i==k&&j==l的时候…