Pandas数据结构】的更多相关文章

pandas是一个用于进行python科学计算的常用库,包含高级的数据结构和精巧的工具,使得在Python中处理数据非常快速和简单.pandas建造在NumPy之上,它使得以NumPy为中心的应用很容易使用. pandas为数据提供了一些解决方案: 支持自动或明确的数据对齐的带有标签轴的数据结构.这可以防止由数据不对齐引起的常见错误,并可以处理不同来源的不同索引数据. 整合的时间序列功能. 以相同的数据结构来处理时间序列和非时间序列. 支持传递元数据(坐标轴标签)的算术运算和缩减. 灵活处理丢失…
Pandas处理以下三个数据结构 - 系列(Series) 数据帧(DataFrame) 面板(Panel) 这些数据结构构建在Numpy数组之上,这意味着它们很快. 维数和描述 考虑这些数据结构的最好方法是,较高维数据结构是其较低维数据结构的容器. 例如,DataFrame是Series的容器,Panel是DataFrame的容器. 数据结构 维数 描述 系列 1 1D标记均匀数组,大小不变. 数据帧 2 一般2D标记,大小可变的表结构与潜在的异质类型的列. 面板 3 一般3D标记,大小可变数…
pandas数据结构 pandas处理3种数据结构,它们建立在numpy数组之上,所以运行速度很快: 1.系列(Series) 2.数据帧(DataFrame) 3.面板(Panel) 关系: 数据结构 维数 描述 系列 1 1D标记均匀数组,大小不变. 数据帧 2 一般2D标记,大小可变的表结构与潜在的异质类型的列. 面板 3 一般3D标记,大小可变数组. 可以理解为高维数据结构是低维数据结构的容器.   所有数据结构的值都是可变的,系列大小不可变,其他数据结构大小可变.…
pandas数据结构介绍 主要两种数据结构:Series和DataFrame.   Series   Series是一种类似于一维数组的对象,由一组数据(各种NumPy数据类型)+数据标签(即索引)组成. #直接传入一组数据 from pandas import Series,DataFrame obj=Series([4,2,3]) obj #Series的values和index属性获取数组表示形式和索引对象 obj.values obj.index Series字符串的表现形式:索引在左,…
安装pandas 通过python pip安装pandas pip install pandas pandas数据结构 pandas常用数据结构包括:Series和DataFrame Series Series是一种一维的数组型对象,包含一个值序列(与numpy中的数据类型相似),数据标签(称为索引(index)). import pandas as pd # 创建Series对象 obj=pd.Series([4,5,6,7]) print(obj) 0 4 1 5 2 6 3 7 dtype…
03. Pandas数据结构 Series DataFrame 从DataFrame中查询出Series 1. Series Series是一种类似于一维数组的对象,它由一组数据(不同数据类型)以及一组与之相关的数据标签(即索引)组成. 1.1 仅有数据列表即可产生最简单的Series 1.2 创建一个具有标签索引的Series 1.3 使用Python字典创建Series 1.4 根据标签索引查询数据 类似Python的字典dict 2. DataFrame DataFrame是一个表格型的数…
DataFrame 类型类似于数据库表结构的数据结构,其含有行索引和列索引,可以将DataFrame 想成是由相同索引的Series组成的Dict类型.在其底层是通过二维以及一维的数据块实现. 1.  DataFrame 对象的构建 1.1 用包含等长的列表或者是NumPy数组的字典创建DataFrame对象 In [68]: import pandas as pd In [69]: from pandas import Series,DataFrame # 建立包含等长列表的字典类型 In […
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会使用默认索引(从0到N-1). # 引入Series和DataFrameIn [16]: from pandas import Series,DataFrame In [17]: import pandas as pd In [18]: ser1 = Series([1,2,3,4]) In [19…
更多函数查阅http://pandas.pydata.org/pandas-docs/stable/10min.htmlimport pandas as pd#两种数据结构from pandas import Series,DataFrame #Series由一组数据和一组索引组成# obj=Series([2,3,5,7,3,1])# print(obj) #建立Series的时候指定索引# obj2=Series([1,2,3,4,5],index=['a','b','c','d','e']…
Dataframe DataFrame是一个[表格型]的数据结构,可以看做是[由Series组成的字典](多个series共用同一个索引).DataFrame由按一定顺序排列的多列数据组成.设计初衷是将Series的使用场景从一维拓展到多维.DataFrame既有行索引,也有列索引. 行索引:index 列索引:columns 值:values(numpy的二维数组) dataframe的创建 最常用的方法是传递一个字典或者二维数组的方法创建 DataFrame(data=data,index=…
pandas 最常用的三种基本数据结构: 1.dataFrame: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html  DataFrame相当于有表格(eg excel),有行表头和列表头 1.1初始化: a=pd.DataFrame(np.random.rand(,),index=list("ABCD"),columns=list('abcde')) 1.2 a['f']=[1,2…
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会使用默认索引(从0到N-1). # 引入Series和DataFrameIn [16]: from pandas import Series,DataFrame In [17]: import pandas as pd In [18]: ser1 = Series([1,2,3,4]) In [19…
操作Series和DataFrame中的数据的常用方法: 导入python库: import numpy as np import pandas as pd 测试的数据结构: Series: >>> obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c']) >>> obj d 4.5 b 7.2 a -5.3 c 3.6 dtype: float64 DataFrame: >>>…
pandans另种主要的数据结构Series和DateFranme 1,Series 仅由一组数据就而已产生简单的Series 2)Series 有index和values属性,表达索引对象 3)设置索引和取值 4)把数据存放到字典,也可以通过字典建立Series DataFrame 1,是一种表格行的数据结构,它包含一组有序的列,既有行索引也有列索引, 2,指定顺序排列 用columns 3,取值是可Series取值一样,这边多啦一个ix取值方式,主要是安装列索引来取值,赋值 4, · 4.D…
"二维数组"Dataframe:是一个表格型的数据结构,包含一组有序的列,其列的值类型可以是数值.字符串.布尔值等. Dataframe中的数据以一个或多个二维块存放,不是列表.字典或一维数组结构. 1. Dataframe的数据结构 # Dataframe 数据结构 # Dataframe是一个表格型的数据结构,“带有标签的二维数组”. # Dataframe带有index(行标签)和columns(列标签) data = {'name':['Jack','Tom','Mary'],…
Series:"一维数组" 1. 和一维数组的区别 # Series 数据结构 # Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引 s = pd.Series(np.random.rand(5)) print(s) #从输出可见区别于数组,有了标签.Series = 一维数组+标签组成 print(type(s)) # 查看数据.数据类型 print(s.index,type(s.index)) print(s.v…
Pandas 是 Python 中基于Numpy构建的数据操纵和分析软件包,包含使数据分析工作变得快速简洁的高级数据结构和操作工具.通过Pandas Series 和 Pandas DataFrame这两个数据结构,我们可以轻松直观地处理带标签数据和关系数据.本节主要介绍Pandas Series的基本使用. Pandas Series Pandas Series是一种类似于数组的一维对象,可以存储不同类型的数据.其中,Series对象的数据存在一组与之关联的数据标签(索引),通过Series的…
这一次我的学习笔记就不直接用官方文档的形式来写了了,而是写成类似于“知识图谱”的形式,以供日后参考. 下面是所谓“知识图谱”,有什么用呢? 1.知道有什么操作(英文可以不看) 2.展示本篇笔记的结构 3.以后忘记某个函数某个参数时,方便查询   原来写的地方是,那儿的代码看起来会舒服很多: https://www.yuque.com/u86460/dgt6mu/tlywuc      创建 df.Dataframe(data,index) 1.data类型是字典 字典由series构成 >>&…
阅读之前假定你已经有了python内置的list和dict的基础.这里内容几乎是官方文档的翻译版本.   概览: ​   原来的文档是在一个地方,那边的代码看起来舒服些   https://www.yuque.com/u86460/dgt6mu/bx0m4g 一个要铭记在新的基本特点是 数据对齐 要点:索引,轴标签,生成实例时传入的数据类型 ​   #*生成:pd.Series(data,index)        data是传入的数据,index是第一列的名称(即标签)      (其他不常用…
Series是一种类似于一维数组的对象,又一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即是索引)组成. 可以将Series看成是一个定长的有序字段,因为它是索引值到数据值的一个映射. import pandas as pd >>>obj=pd.Series([4,5,6,7])#仅由一组数据(列表,元组)即可产生最简单的Series,索引自动生成,从0开始,可以通过values和index属性获取其数组的表示形式和索引对象 >>> obj 0    4…
import pandas as pd import numpy as np s = pd.Series([1,3,5,6,8],index=list('acefh')) s.index # 读取行索引 # 输出 Index(['a', 'c', 'e', 'f', 'h'], dtype='object') s.reindex(list('abcdefgh')) # 索引再定义,与元索引相同,值不变,其它变为NaN s.reindex(list('abcdefgh'),fill_value=0…
Panel创建的是三维的表 items:坐标轴0,索引对应的元素是一个DataFrame major_axis:坐标轴1,DataFrame里的行标签 minor_axis:坐标轴2,DataFrame里的列标签 下面看一下一些代码演练 import numpy as np import pandas as pd data = {'Item1':pd.DataFrame(np.random.randn(4,3)), 'Item2':pd.DataFrame(np.random.randn(4,2…
DataFrame输出的为表的形式,由于要把输出的表格贴上来比较麻烦,在此就不在贴出相关输出结果,代码在jupyter notebook可以顺利运行代码中有相关解释用来加深理解方便记忆 import numpy as np import pandas as pd d = {'one':pd.Series([1,2,3],index=['a','b','c']), 'two':pd.Series([1,2,3,4],index=['a','b','c','d'])} df = pd.DataFra…
对Series的理解也源于对其相关的代码操作,本次仅贴一些代码来加深理解以及记忆 import pandas as pd import numpy as np s = pd.Series(np.random.randn(5),index=['a','b','c','d','e']) # index添加行索引 s # 输出 a 1.752127 b 0.127374 c 0.581114 d 0.466064 e -1.493042 dtype: float64 s.index # 输出 Inde…
1."一维数组"Series Pandas数据结构Series:基本概念及创建 s.index  . s.values # Series 数据结构 # Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引 import numpy as npimport pandas as pd>>> s = pd.Series(np.random.rand(5)) >>> print(s,type(…
pandas数据结构 1.生成一维矩阵模拟数据 import pandas as pdimport numpy as nps = pd.Series([1,2,3,4,np.nan,9,9])s2 = pd.date_range('20181201',periods=6)#periods周期​ 2.生成二维矩阵模拟数据 import pandas as pdimport numpy as np#(1)创建二维矩阵df = pd.DataFrame([[1,2,3],[4,5,6],[7,8,9]…
系列(Series) 数据帧(DataFrame) 面板(Panel) 这些数据结构构建在Numpy数组之上,这意味着它们很快. 考虑这些数据结构的最好方法是,较高维数据结构是其较低维数据结构的容器. 例如,DataFrame是Series的容器,Panel是DataFrame的容器. 数据结构 维数 描述 系列 1 1D标记均匀数组,大小不变. 数据帧 2 一般2D标记,大小可变的表结构与潜在的异质类型的列. 面板 3 一般3D标记,大小可变数组. 构建和处理两个或更多个维数组是一项繁琐的任务…
Pandas 概述 Pandas(Python Data Analysis Library)是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷地处理数据的函数和方法.它是使Python成为强大而高效的数据分析环境的重要因素之一. Pandas专用于数据预处理和数据分析的Python第三方库,最适合处理大型结构化表格数据 Pandas是2008年Wes Mc…
Pandas的三种数据结构: 系列(Series) 数据帧(DataFrame) 面板(Panel) 这些数据结构,构建在Numpy数组之上,这意味着它们很快 维数和描述 考虑这些数据结构的最好方法是,较高维数据结构是其较低维数据结构的容器. 例如,DataFrame是Series的容器,Panel是DataFrame的容器. 数据结构 维数 描述 系列 1 1D标记均匀数组,大小不变. 数据帧 2 一般2D标记,大小可变的表结构与潜在的异质类型的列. 面板 3 一般3D标记,大小可变数组. 构…
pandas简介 pandas是一个强大的Python数据分析的工具包.是基于Numpy来构件的. pandas提供快速.灵活和富有表现力的数据结构. 主要功能: 具备对其功能的数据结构DataFrame.Series 集成时间序列功能 提供丰富的数学运算和操作 灵活处理缺失数据 安装 pip install pandas pandas数据结构-系列Series Series是一种类似于一位数组的对象,由一组数据和一组与之相关的数据标签(索引)组成. values:一组数据(ndarray类型)…