P3301 [SDOI2013]方程】的更多相关文章

思路 容斥的挺好的练习题 对于第二个条件,可以直接使m减去suma2,使得第二个条件舍去,然后m再减去n,使得问题转化成有n1个变量要满足小于等于某个数的条件,其他的随便取,求整数解的个数 对n1,以2^n的复杂度枚举至少哪些不符合限制,然后容斥(至少0个-至少1个+至少2个....) 然后用隔板法可以得到每一次答案为 \[ \left(\begin{matrix}m-midt-1\\n-1\end{matrix}\right) \] 注意本题模数不是质数,需要EXLucas,同时由于本题卡时间…
题面 传送门 题解 为啥全世界除了我都会\(exLucas\)啊--然而我连中国剩余定理都不会orz 不知道\(exLucas\)是什么的可以去看看yx巨巨的这篇博客->这里 好了现在我们就解决了计算组合数的问题了,接下来问题就在于怎么计算了 首先如果是强制大于等于很简单,设条件分别为\(x_i\geq A_i\),那么方案数就是\({m-\sum(A_i-1)-1\choose n-1}\),用隔板法就能证明 然而现在前面一部分是小于等于,这好办,我们把它化成\(x_i\geq A_i+1\)…
3129: [Sdoi2013]方程 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 582  Solved: 338[Submit][Status][Discuss] Description 给定方程    X1+X2+. +Xn=M我们对第l..N1个变量进行一些限制:Xl < = AX2 < = A2Xn1 < = An1我们对第n1 + 1..n1+n2个变量进行一些限制:Xn1+l > = An1+1Xn1+2 > =…
BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程     X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A X2 < = A2 Xn1 < = An1 我们对第n1 + 1..n1+n2个变量进行一些限制: Xn1+l > = An1+1 Xn1+2 > = An1+2 Xnl+n2 > = Anl+n2 求:在满足这些限制的前提下,该方程正整数解的个数. 答案可能很大,请输出对p取模…
[BZOJ3129][SDOI2013]方程(容斥,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 因为答案是正整数,所先给每个位置都放一个就行了,然后\(A\)都要减一. 大于的限制和没有的区别不大,提前给他\(A_i\)个就好了. 假如没有小于的限制的话,那么就是经典的隔板法直接算答案. 如果提前给完之后,还剩\(M\)个球,要放进\(n\)个盒子,答案就是\(\displaystyle{M+n-1\choose n-1}\) 然而有一个小于的限制很烦人.发现数量很少,那么直接爆枚子集,强制一…
http://www.lydsy.com/JudgeOnline/problem.php?id=3129 如果没有Ai的限制,就是隔板法,C(m-1,n-1) >=Ai 的限制:m减去Ai <=Ai 的限制:容斥原理,总数- 至少有一个数>Ai + 至少有两个数>Ai - …… 计算组合数取模,模数虽然很大也不是质数,但是质因数分解后 最大的才 10201,所以用扩展卢卡斯即可 注意在用扩展卢卡斯计算 阶乘的时候,要预处理 不包含当前质因子的阶乘,否则会TLE 3个点 #inclu…
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 m 减去 Ai - 1 ,相当于将这一部分固定分给 xi,就转化为无限制的情况了. 如果有一些限制条件是 xi <= Ai 呢?直接来求就不行了,但是注意到这样的限制不超过 8 个,我们可以使用容斥原理来求. 考虑容斥:考虑哪些限制条件被违反了,也就是说,有哪些限制为 xi <= Ai 却是 xi…
题目 给定方程 X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A X2 < = A2 Xn1 < = An1 我们对第n1 + 1..n1+n2个变量进行一些限制: Xn1+l > = An1+1 Xn1+2 > = An1+2 Xnl+n2 > = Anl+n2 求:在满足这些限制的前提下,该方程正整数解的个数. 答案可能很大,请输出对p取模后的答案,也即答案除以p的余数. 输入格式 输入含有多组数据,第一行两个正整数T,p.T表示…
题目大意:给定一个方程$X_{1}+X_{2}+X_{3}+X_{4}+...+X_{n}=M$,$\forall X_{i}<=A_{i} (i<=n1)$ $\forall X_{i}>=A_{i} (n1<i<=n2)$在保证的合法正整数解个数n1<=8,n2<=8 一波三折的数学题,调了半天才发现我的Lucas是错的,但它竟然通过了洛谷那一道模板题的全部数据.... 后面n1~n2的部分很好处理,直接用M减掉这个部分就行了 因为是求正整数解,所以这个组合数…
...最近考了一道数学题.是典型的隔板问题. P.S.最近八中oj上面没有系统地刷过题 题面可以直接转化为m个球分到n个箱子,每个箱子至少放1个,前n1个箱子的球数必须满足全部小于等于A[i],接着n2个必须大于等于A[i],剩下随意,问方案. 在没有约束时,答案自然是C(M-1,N-1),这个用插板法很好想>0< 考虑第二种约束,我们只要先提前在篮子里钦定A[i]-1个球,那么剩下随便放就一定能满足了. 对付第一种约束,我们用容斥原理来实现.所有方案数-至少有一个错误+至少两个错误-至少三个…
如果没有限制,答案直接用隔板法C(m-1,n-1) 对于>=x的限制,我们直接在对应位置先放上x-1即可,即m=m-(x-1) 对于<=x的限制,由于限制很小我们可以利用容斥原理将它转化为上面的>=x的限制 即减去1个不满足的 加上2个不满足的 减去3个不满足的 …… 之后就是组合数的计算,对于一个非常大的模数,我们可以将它唯一分解,之后CRT还原即可 但是我们有可能不存在逆元,数据范围不允许我们递推计算组合数 我们知道没有逆元当且仅当(a,p)不互素,我们可以将阶乘分成两部分:互素和不…
拓展Lucas+容斥原理 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #include<vector> #include<cmath> #include<queue> #define MAXN 10000+10 #define INF 0x7f7f7f7f #define LINF 0x7f7f7f7f7f7f7f7f #…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3129 题解: 容斥,扩展Lucas,中国剩余定理 先看看不管限制,只需要每个位置都是正整数时的方案数的求法.假设有 N 个未知数,加起来的和为 M.转化一下问题变为:"小球分配" 有 M 个相同的小球,放在 N 个盒子里,且每个盒子至少有一个的方案数. 那么方案数为 ${C}_{M-1}^{N-1}$怎么理解这个式子呢?"插隔板法".使 M个小球放在一排,考虑…
没有限制的话算一个组合数就好了.对于不小于某个数的限制可以直接减掉,而不大于某个数的限制很容易想到容斥,枚举哪些超过限制即可. 一般情况下n.m.p都是1e9级别的组合数没办法算.不过可以发现模数已经被给出,并且这些模数的最大质因子幂都不是很大,那么扩展lucas就可以了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring>…
正解:$exLucas$+容斥 解题报告: 传送门! 在做了一定的容斥的题之后再看到这种题自然而然就应该想到容斥,,,? 没错这题确实就是容斥,和这题有点儿像 注意下的是这里的大于和小于条件处理方式不同昂$QwQ$ 对于大于等于,直接在一开始就先给它那么多就好,就先提前把$m-=\sum_{i=n_{1}+1}^{n_{1}+n_{2}} A_i$,这样就只剩小于等于的条件了 小于等于,一看最多就8个,显然就成了经典容斥套路题了鸭, 于是就枚举哪个爆了,然后可重排列搞下,容斥下,就做完了 放下推…
目录 2018.3.25 Test 总结 T1 BZOJ.3129.[SDOI2013]方程(扩展Lucas 容斥) T2 洛谷.3305.[SDOI2013]费用流(最大流ISAP 二分) T3 BZOJ.3131.[SDOI2013]淘金(数位DP 堆) 考试代码 T1 T2 T3 2018.3.25 Test 时间:7:30~11:30 (最后半小时不做了) 期望得分:50+100+20=170 实际得分:40+44+20=104 总结 T1:善用容斥. T2:要求输出小数当然有它的道理.…
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem 10983 18765 Y 1036 [ZJOI2008]树的统计Count 5293 13132 Y 1588 [HNOI2002]营业额统计 5056 13607 1001 [BeiJing2006]狼抓兔子 4526 18386 Y 2002 [Hnoi2010]Bounce 弹飞绵羊 43…
题意:给定方程x1+x2+....xn=m,每个x是正整数.但是对前n1个数做了限制x1<=a1,x2<=a2...xn1<=an1,同时对第n1+1到n1+n2个数也做了限制xn1+1>=an1+1....xn1+n2>=an1+n2,输出方程解个数. 解法:首先如果对数字没有任何要求(应该是只要求是非负数)的话,答案就是C(n+m+1,m+1)原理是隔板法.但是此题有各种限制,我们想办法解决限制使得答案往无限制上面靠. 首先是解决要正整数,那么每个数字减一即可,就是m-=…
╰( ̄▽ ̄)╭ 给定方程 X1+X 2+-+Xn=m 我们对第 1.. n1 个变量 进行一些限制 : X1≤A1 X2≤A2 - Xn1 ≤An1 我们对第 n1+1.. n1+1.. n1+ n2 个变量 进行一些限制 : X_(n1+1)≥A_(n1+1) X_(n1+2)≥A_(n1+2) - X_(n1+n2) ≥A_(n1+n2) 求:在满足这些限制的前提下, 该方程正整数解的个数. 答案可能很大,请输出对 p取模 后的答案 ,也即 答案除以 p的余数. (⊙ ▽ ⊙) 利用容斥原理…
https://blog.csdn.net/Maxwei_wzj/article/details/80152116 对变量有上界限制及下界限制.对于下界,可以从总数中减去即可,对于上界,容斥定理.…
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1442  Solved: 552 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Output 共T行,每行一个整数表示他最早读到第t页是哪一天.如果他永远不会读到第t页,输出-1. Sa…
[BZOJ3203] [SDOI2013]保护出题人(二分+凸包) 题面 题面较长,略 分析 对于第i关,我们算出能够打死前k个个僵尸的最小能力值,再取最大值就可以得到\(y_i\). 前j-1个僵尸到门的距离为\(x_i+(i-j+1) \times d\),血量为\(sum[i]-sum[j]\),因此 \[y_i=max(\frac{sum_i-sum_j}{x_i+(i-j+1) \times d})= max(\frac{sum_i-sum_j}{x_i+i \times d-(j+1…
摘要 本文主要说明SVM中用到的超平面方程是怎么来的,以及各个符号的物理意义,怎么算空间上某点到该平面的距离. 正文 < 统计学习方法>一书给出如下说明: 首先说明我对超平面的理解: 在三维坐标系里,XoY平面把三维坐标系"分割"成两个空间,这个分割平面引申到一维,二维,四维空间-来,他就是一个超平面.一维里是一个点分割空间,二维里是条线,3维刚好是个平面,4维的用几何已经无法表示了,但是我们赋予这个分割的东西为超平面,就比较形象了. 对于这个分离超平面方程时怎么来的,书中…
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,a2,...,an. Output 第一行输出方程在[1,m]内的整数解的个数. 接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,m]内的一个整数解.   Sample Input 2 10 2 -3 1 Sam…
3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 960  Solved: 505[Submit][Status][Discuss] Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识.    最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络流方案必须满足:(1)每条边的实际流量都不超…
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已知多项式方程: $$a_0+a_1x+a_2x^2+...+a_nx^n=0$$ 求这个方程在[1, m]内的整数解(n 和 m 均为正整数). 输入格式 输入共 n+2 行. 第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开. 接下来的 n+1 行每行包含一个整数,依次为$a_0,a_…
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation…
广义线性模型虽然很大程度上拓展了线性模型的应用范围,但是其还是有一些限制条件的,比如因变量要求独立,如果碰到重复测 量数据这种因变量不独立的情况,广义线性模型就不再适用了,此时我们需要使用的是广义估计方程. 广义估计方程最主要的工作是为每个观察对象单独指定一个作业相关矩阵,从而解决了因变量不独立的问题. 下面看一个例子还是用之前重复测量数据的例子,我们用广义估计方程进行拟合 分析—广义线性模型—广义估计方程 前面我们选择的作业矩阵为默认的独立无相关,也就是认为该数据的因变量之间是不相关的,这和实…
要点: 首先对于任何方程 :f(x)=0 ,可以转换成 f(x)+x-x => f(x)+x=x; 取g(x)=f(x)+x;  那么 新方程g(x)=x 的解即是 f(x)=0的解,即g(x)-x=0 成立时有 f(x)+x-x=0 现在研究g(x)=x 的解,该方程的解对应 函数 y=g(x) 与 函数y=x的交点(x1,y1)的x坐标即x1. 函数y=x 是对称直线,上面的的任意点(xa,ya)有xa=ya. picard 方法的具体过程是,选任意x=x0(当然实际上是有条件的,见教程例9…
  描述 已知多项式方程: a0+a1x+a2x2+...+anxn=0a0+a1x+a2x2+...+anxn=0 求这个方程在[1, m]内的整数解(n 和 m 均为正整数). 格式 输入格式 输入共 n+2 行. 第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开. 接下来的 n+1 行每行包含一个整数,依次为a0,a1,a2,...,ana0,a1,a2,...,an. 输出格式 第一行输出方程在[1, m]内的整数解的个数. 接下来每行一个整数,按照从小到大的顺序依次输出方程…