sklearn特征选择和分类模型】的更多相关文章

sklearn特征选择和分类模型 数据格式: 这里.原始特征的输入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2这样的稀疏矩阵的格式. sklearn中自带了非常多种特征选择的算法. 我们选用特征选择算法的根据是数据集和训练模型. 以下展示chi2的使用例.chi2,採用卡方校验的方法进行特征选择.比較适合0/1型特征和稀疏矩阵. from sklearn.externals.joblib import Memory from skl…
[转载]sklearn多分类模型 这篇文章很好地说明了利用sklearn解决多分类问题时的implement层面的内容:https://www.jianshu.com/p/b2c95f13a9ae.我自己就不搬运了…
sklearn CART决策树分类 决策树是一种常用的机器学习方法,可以用于分类和回归.同时,决策树的训练结果非常容易理解,而且对于数据预处理的要求也不是很高. 理论部分 比较经典的决策树是ID3.C4.5和CART,分别分析信息增益.增益率.基尼指数,总体思想是不断降低信息的不确定性,最后达到分类的目的. 这里介绍的CART(Classification And Regression Tree)决策树选用基尼指数(Gini Index)来依次选择划分属性 \[Gini(D)=\sum_{k=1…
实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配; 基于理解的句法和语义分析消歧: 基于统计的互信息/CRF方法: WordEmbedding + Bi-LSTM+CRF方法 去停用词:维护一个停用词表 (2)特征提取 特征选择的基本思路是根据某个评价指标独立的对原始特征项(词项)进行评分排序,从中选择得分最高的…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d…
sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改造方式有两大类:(1)OVR/A(One VS Rest/ALL)(2)OVO(One VS One) 2.对于OVR的改造方式,主要是指将多个分类结果(假设为n)分成是其中一种分类结果的和(其他),这样便可以有n种分类的模型进行训练,最终选择得分最高的的(预测率最高的的)便为分类结果即可.它所训练…
分类模型的F1分值.Precision和Recall 计算过程 引入 通常,我们在评价classifier的性能时使用的是accuracy 考虑在多类分类的背景下 accuracy = (分类正确的样本个数) / (分类的所有样本个数) 这样做其实看上去也挺不错的,不过可能会出现一个很严重的问题:例如某一个不透明的袋子里面装了1000台手机,其中有600台iphone6, 300台galaxy s6, 50台华为mate7,50台mx4(当然,这些信息分类器是不知道的...).如果分类器只是简单…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ------------------------------------------ 一.风控建模流程以及分类模型建设 1.建模流程 该图源自课程讲义.主要将建模过程分为了五类.数据准备.变量粗筛.变量清洗.变量细筛…
线性回归模型适用于输出为连续值的情景,例如输出为房价.在其他情景中,模型输出还可以是一个离散值,例如图片类别.对于这样的分类问题,我们可以使用分类模型,例如softmax回归. 为了便于讨论,让我们假设输入图片的尺寸为2×2,并设图片的四个特征值,即像素值分别为\(x_1,x_2,x_3,x_4\).假设训练数据集中图片的真实标签为狗.猫或鸡,这些标签分别对应离散值\(y_1,y_2,y_3\). 单样本分类的矢量计算表达式 针对上面的问题,假设分类模型的权重和偏差参数分别为: \[W=\beg…