1. 深度学习有哪些应用 图像:图像识别.物体识别.图片美化.图片修复.目标检测. 自然语言处理:机器创作.个性化推荐.文本分类.翻译.自动纠错.情感分析. 数值预测.量化交易 2. 什么是神经网络 我们以房价预测的案例来说明一下,把房屋的面积作为神经网络的输入(我们称之为…
论文名字:Batch Normalization: Accelerating Deep Network Training by  Reducing Internal Covariate Shift 论文地址:https://arxiv.org/abs/1502.03167 BN被广泛应用于深度学习的各个地方,由于在实习过程中需要修改网络,修改的网络在训练过程中无法收敛,就添加了BN层进去来替换掉LRN层,网络可以收敛.现在就讲一下Batch Normalization的工作原理. BN层和卷积层…
Droupout与Batch Normalization都是深度学习常用且基础的训练技巧了.本文将从理论和实践两个角度分布其特点和细节. Droupout 2012年,Hinton在其论文中提出Dropout.当一个复杂的前馈神经网络被训练在小的数据集时,容易造成过拟合.为了防止过拟合,可以通过阻止特征检测器的共同作用来提高神经网络的性能. Droupout是一种针对深度学习广泛应用的正则化技术.在每次迭代时随机关闭一些神经单元,随着迭代的进行,由于其他神经元可能在任何时候都被关闭,因此神经元对…
[转载] ReLU和BN层简析 来源:https://blog.csdn.net/huang_nansen/article/details/86619108 卷积神经网络中,若不采用非线性激活,会导致神经网络只能拟合线性可分的数据,因此通常会在卷积操作后,添加非线性激活单元,其中包括logistic-sigmoid.tanh-sigmoid.ReLU等. sigmoid激活函数应用于深度神经网络中,存在一定的局限性,当数据落在左右饱和区间时,会导致导数接近0,在卷积神经网络反向传播中,每层都需要…
Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3*3卷积代替 Inception V1中的 5*5大卷积.这样做在减少参数(3*3*2+2 –> 5*5+1)的同时可以建立更多的非线性变换,增强网络对特征的学习能力.如下图所示,2个 3*3卷积的效果与一个 5*5 卷积的效果类似: 在 Inception V1中加入BN层,以减少 Internal…
原文链接 https://arxiv.org/pdf/1603.09025.pdf Covariate 协变量:在实验的设计中,协变量是一个独立变量(解释变量),不为实验者所操纵,但仍影响实验结果. whiting : https://blog.csdn.net/elaine_bao/article/details/50890491 <Batch Normalization: Accelerating Deep Network Training by Reducing Internal Cova…
前言 Batch Normalization是由google提出的一种训练优化方法.参考论文:Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift 个人觉得BN层的作用是加快网络学习速率,论文中提及其它的优点都是这个优点的副产品. 网上对BN解释详细的不多,大多从原理上解释,没有说出实际使用的过程,这里从what, why, how三个角度去解释BN. What is…
Coursera吴恩达<优化深度神经网络>课程笔记(3)-- 超参数调试.Batch正则化和编程框架 1. Tuning Process 深度神经网络需要调试的超参数(Hyperparameters)较多,包括: :学习因子 :动量梯度下降因子 :Adam算法参数 #layers:神经网络层数 #hidden units:各隐藏层神经元个数 learning rate decay:学习因子下降参数 mini-batch size:批量训练样本包含的样本个数 超参数之间也有重要性差异. 1.通常…
batch normalization学习理解笔记 最近在Andrew Ng课程中学到了Batch Normalization相关内容,通过查阅资料和原始paper,基本上弄懂了一些算法的细节部分,现在总结一下. 1. batch normalization算法思想的来源 不妨先看看原文的标题:Batch normalization:acclerating deep network training by reducing internal covariate shift.字面意思即:Batch…
目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Normalization的作用 几个问题 卷积层如何使用BatchNorm? 没有scale and shift过程可不可以? BN层放在ReLU前面还是后面? BN层为什么有效? 参考 博客:blog.shinelee.me | 博客园 | CSDN 动机 在博文<为什么要做特征归一化/标准化? 博客园…