岭回归和LASSO】的更多相关文章

      多元线性回归模型 的最小二乘估计结果为 如果存在较强的共线性,即 中各列向量之间存在较强的相关性,会导致的从而引起对角线上的 值很大 并且不一样的样本也会导致参数估计值变化非常大.即参数估计量的方差也增大,对参数的估计会不准确. 因此,是否可以删除掉一些相关性较强的变量呢?如果p个变量之间具有较强的相关性,那么又应当删除哪几个是比较好的呢? 本文介绍两种方法能够判断如何对具有多重共线性的模型进行变量剔除.即岭回归和LASSO(注:LASSO是在岭回归的基础上发展的)     思想:…
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数,系数压缩趋近于0就可以认为舍弃该特征. 岭回归(Ridge Regression)和Lasso回归是在普通最小二乘线性回归的基础上加上正则项以对参数进行压缩惩罚. 首先,对于普通的最小二乘线性回归,它的代价函数是: 通过拟合系数β来使RSS最小.方法很简单,求偏导利用线性代数解方程组即可. 根据线…
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,这个约束项被叫做正则化项(regularizer).在线…
norm代表的是距离,两个向量的距离:下图代表的就是p-norm,其实是对向量里面元素的一种运算: 最简单的距离计算(规范)是欧式距离(Euclidean distance),两点间距离是如下来算的,属于L2-norm: 另外一种就是出租车距离(也称之为曼哈顿距离):这是一种1-norm: L1-norm对应的就是1-norm,L2-norm对应的是2-norm: 注意上面的x代表的是两个向量的差值,x=v1-v2:x1=v1[1]-v2[1]. 下面的就是岭回归(L2-norm)和Lasso回…
回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值是连续的,也就是说,回归模型更像是一个函数,该函数通过不同的输入,得到不同的输出. 那么,什么是线性回归,什么是非线性回归呢? 线性回归与非线性回归 前面说了,我们的回归模型是一个函数是吧,那么线性回归就是模型函数是由若干个基本函数线性加权得到的函数.也就是每一个基本函数前面都有一个权值来调和自己对…
线性回归的一般形式 过拟合问题及其解决方法 问题:以下面一张图片展示过拟合问题 解决方法:(1):丢弃一些对我们最终预测结果影响不大的特征,具体哪些特征需要丢弃可以通过PCA算法来实现:(2):使用正则化技术,保留所有特征,但是减少特征前面的参数θ的大小,具体就是修改线性回归中的损失函数形式即可,岭回归以及Lasso回归就是这么做的. 岭回归与Lasso回归 岭回归与Lasso回归的出现是为了解决线性回归出现的过拟合以及在通过正规方程方法求解θ的过程中出现的x转置乘以x不可逆这两类问题的,这两种…
机器学习-正则化(岭回归.lasso)和前向逐步回归 本文代码均来自于<机器学习实战> 这三种要处理的是同样的问题,也就是数据的特征数量大于样本数量的情况.这个时候会出现矩阵不可逆的情况,为什么呢? 矩阵可逆的条件是:1. 方阵 2. 满秩 X.t*X必然是方阵(nxmxmxn=nxn,最终行列数是原来的X矩阵的列数,也就是特征数),但是要满秩的话,由于线性代数的一个结论,X.t*X的秩不会比X大,而X的秩是样本数和特征数中较小的那一个,所以,如果样本数小于特征数的话,X.t*X就不会是可逆的…
参考:https://blog.csdn.net/Byron309/article/details/77716127     ----    https://blog.csdn.net/xbinworld/article/details/44276389 参考:https://blog.csdn.net/bitcarmanlee/article/details/51589143 1.首先介绍线性回归模型(多元)原理,模型可以表示为: 损失函数可以表示为: 这里的 1/2m 主要还是出于方便计算的…
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,…
模型泛化与岭回归与LASSO 模型正则化 模型正则化,简单来说就是限制参数大小 模型正则化是用什么思路来解决先前过拟合的由于过于拟合导致的曲线抖动(线性方程前的系数都很大) 线性回归的目标就是求一个最优解,让损失函数尽可能的小也就是使求出来的均方误差尽可能的小 如果过拟合的话,就会让theta系数过大,那么怎么限制呢,可以改变损失函数,加入模型正则化,将其加上所有thetai的平方和乘上一个常数(这个阿尔法是个新的超参数,代表着后面的式子在整个式子中的重要程度(占比)),变为 让式子中的thet…
# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import model_selectionfrom sklearn.linear_model import Ridge,RidgeCV # 读取糖尿病数据集diabetes = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\08\\diabetes.xlsx…
0.对于正则罚项的理解 1.岭回归(L2 ridge regression ) 是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息.降低精度为代价获得回归系数更为符合实际.更可靠的回归方法,对病态数据的拟合要强于最小二乘法. 关于最小二乘以及岭回归问题的解: 2.LASSO(Least Absolute Shrinkage and Selection Operator) 该方法是一种压缩估计.它通过构造一个惩罚函数得到一个较…
一 线性回归(Linear Regression ) 1. 线性回归概述 回归的目的是预测数值型数据的目标值,最直接的方法就是根据输入写出一个求出目标值的计算公式,也就是所谓的回归方程,例如y = ax1+bx2,其中求回归系数的过程就是回归.那么回归是如何预测的呢?当有了这些回归系数,给定输入,具体的做法就是将回归系数与输入相乘,再将结果加起来就是最终的预测值.说到回归,一般指的都是线性回归,当然也存在非线性回归,在此不做讨论. 假定输入数据存在矩阵x中,而回归系数存放在向量w中.那么对于给定…
https://blog.csdn.net/u013524655/article/details/40922303 http://f.dataguru.cn/thread-598486-1-1.html http://www.360doc.com/content/11/0520/00/4910_118025769.shtml                上一篇…
之前我们介绍了多元线性回归的原理, 又通过一个案例对多元线性回归模型进一步了解, 其中谈到自变量之间存在高度相关, 容易产生多重共线性问题, 对于多重共线性问题的解决方法有: 删除自变量, 改变数据形式, 添加正则化项, 逐步回归, 主成分分析等. 今天我们来看看其中的添加正则化项. 添加正则化项, 是指在损失函数上添加正则化项, 而正则化项可分为两种: 一种是L1正则化项, 另一种是L2正则化. 我们把带有L2正则化项的回归模型称为岭回归, 带有L1正则化项的回归称为Lasso回归. 1. 岭…
前言: 场景感知其实不分三维场景和二维场景,可以使用通用的方法,不同之处在于数据的形式,以及导致前期特征提取及后期在线场景分割过程.场景感知即是场景语义分析问题,即分析场景中物体的特征组合与相应场景的关系,可以理解为一个通常的模式识别问题. 论文系列对稀疏编码介绍比较详细...本文经过少量修改和注释,如有不适,请移步原文 code下载:http://www.ifp.illinois.edu/~jyang29/ScSPM.htm 如有评论,请拜访原文.原文链接:http://blog.csdn.n…
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean square error (mse) 计算损失(cost),然后用梯度下降法找到一组使 mse 最小的权重. lasso 回归和岭回归(ridge regression)其实就是在标准线性回归的基础上分别加入 L1 和 L2 正则化(regularization). 本文的重点是解释为什么 L1 正则化会…
可以理解的原理描述: [机器学习]岭回归(L2正则) 最小二乘法与岭回归的介绍与对比 多重共线性的解决方法之——岭回归与LASSO…
一.一般线性回归遇到的问题 在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在: 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量 时,最小二乘回归会有较小的方差 时,容易产生过拟合 时,最小二乘回归得不到有意义的结果 模型的解释能力:如果模型中的特征之间有相互关系,这样会增加模型的复杂程度,并且对整个模型的解释能力并没有提高,这时,我们就要进行特征选择. 以上的这些问题,主要就是表现在模型的方差和偏差问题上,这样的关系可以通过下图说明: (摘自:机器学习实战)…
1.L2正则化(岭回归) 1.1问题 想要理解什么是正则化,首先我们先来了解上图的方程式.当训练的特征和数据很少时,往往会造成欠拟合的情况,对应的是左边的坐标:而我们想要达到的目的往往是中间的坐标,适当的特征和数据用来训练:但往往现实生活中影响结果的因素是很多的,也就是说会有很多个特征值,所以训练模型的时候往往会造成过拟合的情况,如右边的坐标所示. 1.2公式 以图中的公式为例,往往我们得到的模型是: 为了能够得到中间坐标的图形,肯定是希望θ3和θ4越小越好,因为这两项越小就越接近于0,就可以得…
转自:https://blog.csdn.net/dang_boy/article/details/78504258 https://www.cnblogs.com/Belter/p/8536939.html https://www.cnblogs.com/Belter/p/8536939.html  (这个也写的很好,只不过还没看) 1.最小二乘法则 假设我们有n个样本数据,每个数据有p个特征值,然后p个特征值是线性关系. 即对应的线性模型 写成矩阵的形式即是Y=XA,误差B矩阵:即B=Y-X…
一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto') alpha:就是上述正则化参数λ:fit_intercept:默…
本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ...,x_n) \tag{1} \] \[Y = f(X) = a_1x_1 + a_2x_2 + ... a_nx_n + b \tag{2} \] 来预测 \(Y\)的数值.例如对于人的两个属性 (鞋码,体重) 来预测 身高 .从上面来看线性模型的表达式简单.比较容易建模,但是却有很好的解释性.比如…
0.交叉验证 交叉验证的基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train set),另一部分做为验证集(validation set or test set),首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型(model),以此来做为评价分类器的性能指标. 交叉验证用在数据不是很充足的时候.比如在我日常项目里面,对于普通适中问题,如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型.如果样本大于一万条的话,我们一般随机的把数据分…
代码: # -*- coding: utf-8 -*- """ Created on Mon Jul 16 09:08:09 2018 @author: zhen """ from sklearn.linear_model import LinearRegression, Ridge, Lasso import mglearn from sklearn.model_selection import train_test_split import…
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8D%AE.zip 标准方程法 标准方程法是求取参数的另一种方法,不需要像梯度下降法一样进行迭代,可以直接进行结果求取 那么参数W如何求,下面是具体的推导过程 因此参数W可以根据最后一个式子直接求取,但是我们知道,矩阵如果线性相关,那么就无法取逆,如下图 因此,对比梯度下降法和标准方程法我们可以得到下…
Chapter 4 1. 最小二乘和正规方程 1.1 最小二乘的两种视角 从数值计算视角看最小二乘法 我们在学习数值线性代数时,学习了当方程的解存在时,如何找到\(\textbf{A}\bm{x}=\bm{b}\)的解.但是当解不存在的时候该怎么办呢?当方程不一致(无解)时,有可能方程的个数超过未知变量的个数,我们需要找到第二可能好的解,即最小二乘近似.这就是最小二乘法的数值计算视角. 从统计视角看最小二乘法 我们在数值计算中学习过如何找出多项式精确拟合数据点(即插值),但是如果有大量的数据点,…
[占位-未完成]scikit-learn一般实例之十:核岭回归和SVR的比较…
Ridge Regression岭回归 数值计算方法的"稳定性"是指在计算过程中舍入误差是可以控制的. 对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这种矩阵称为"病态矩阵".有些时候不正确的计算方法也会使一个正常的矩阵在运算中表现出病态.对于高斯消去法来说,如果主元(即对角线上的元素)上的元素很小,在计算时就会表现出病态的特征. 回归分析中常用的最小二乘法是一种无偏估计. 当X列满秩时,有 X+表示X的广义逆(或叫伪逆). 当X不是列满…
为了解决数据的特征比样本点还多的情况,统计学家引入了岭回归. 岭回归通过施加一个惩罚系数的大小解决了一些普通最小二乘的问题.回归系数最大限度地减少了一个惩罚的误差平方和. 这里是一个复杂的参数,用来控制收缩量,其值越大,就有更大的收缩量,从而成为更强大的线性系数. Ridge和Line_Model一样,用fit(x,y)来训练模型,回归系数保存在coef_成员中 例子: 在这个例子使用岭回归作为估计器.结果中的每个颜色表示的系数向量的一个不同的功能,这是显示作为正则化参数的函数.在路径的最后,作…