mapreduce过程key 和value分别存什么值 https://blog.csdn.net/csdnliuxin123524/article/details/80191199 Mapper抽象类参数 Mapper< Object, Text, Text, IntWritable> Mapper< Text, Text, Text, Text> Mapper< Text, IntWritable, Text, IntWritable> 第一二个表示输入map的ke…
近期在做数据分析的时候.须要在mapreduce中调用c语言写的接口.此时就须要把动态链接库so文件分发到hadoop的各个节点上,原来想自己来做这个分发,大概过程就是把so文件放在hdfs上面,然后做mapreduce的时候把so文件从hdfs下载到本地,但查询资料后发现hadoop有对应的组件来帮助我们完毕这个操作,这个组件就是DistributedCache,分布式缓存,运用这个东西能够做到第三方文件的分发和缓存功能,以下具体解释: 假设我们须要在map之间共享一些数据,假设信息量不大,我…
在比较四中压缩方法之前,先来点干的,说一下在MapReduce的job中怎么使用压缩. MapReduce的压缩分为map端输出内容的压缩和reduce端输出的压缩,配置很简单,只要在作业的conf中配置即可 //配置压缩 conf.setBoolean("mapred.out.compress", true);//配置map输出的压缩 conf.setBoolean("mapred.output.compress", true); //配置reduce输出的压缩…
MapReduce的流程分为11个步骤,4个实体 1.客户端:编写MapReduce的代码,配置作业,提交作业 2.JobTracker:初始化作业,分配作业,与TaskTracker通信,协调整个作业的执行 3.TaskTracker:保持JobTracker的通信,在分配的数据段上执行Map和Reduce任务,一个Hadoop中可以包含多个TaskTracker 4.HDFS:保存作业的数据.配置信息等,保存作业结果.…
在近期的工作中,我需要用脚本来运行mapreduce,并且要判断运行的结果,根据结果来做下一步的动作. 开始我想到shell中获得上一条命令运行结果的方法,即判断"$?"的值 if [ $? -eq 0 ];then #do something fi 但是有时候即便mapreduce运行失败了,也还是会进入判断结构中. 后来查阅了相关资料,得知hadoop中可以使用yarn的命令,来获得job的状态,包括job名称.完成百分比.当前状态等参数,其实就和yarn的web界面查看到的数据一…
转载自:http://zengzhaozheng.blog.51cto.com/8219051/1392961 1.在Reudce端进行连接. 在Reudce端进行连接是MapReduce框架进行表之间join操作最为常见的模式,其具体的实现原理如下: Map端的主要工作:为来自不同表(文件)的key/value对打标签以区别不同来源的记录.然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出. reduce端的主要工作:在reduce端以连接字段作为key的分组已经完成,…
我准备学习用hadoop来实现下面的过程: 词频统计 存储海量的视频数据 倒排索引 数据去重 数据排序 聚类分析 ============= 先写这么多…
MR任务默认配置: job.setMapperClass() Mapper Mapper将输入的<key,value>对原封不动地作为中间结果输出 job.setMapperOutputKeyClass() 与map结果的k类型一致 设置中间结果的key的类型 job.setMapperOutputValueClass() 与map结果的v类型一致 设置中间结果的value的类型 job.setReducerClass() Reducer Reducer将中间结果直接输出为最终结果. job.…
在HADOOP中使用MRUNIT进行单元测试 前提 1. 了解JUnit4.x的使用. 2. 了解Mock的概念在单元测试中的应用. 3. 了解Hadoop中MapReduce的编程模型. 如果您对Junit和Mock不了解,可以先阅读[翻译]Unit testing with JUnit 4.x and EasyMock in Eclipse - Tutorial. 如果您对Hadoop中MapReduce的编程模型不了解,可以先阅读Map/Reduce Tutorial. 介绍 MRUnit…
hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制用户maps和 reduces的默认的设置. 下面是一些有用变量: 名字 含义 dfs.block.size 分布式文件系统中每个数据块的大小 (bytes) io.sort.factor 合并排序时每层输入的文件数 io.sort.mb 排序输入的reduce时缓存大小 io.file.buffe…
Hadoop 中利用 mapreduce 读写 mysql 数据   有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,而这些特性正是 hbase 或者 hive 目前亟待改进的地方. 好了言归正传,简单的说说背景.原理以及需要注意的地方: 1.为了方便 MapReduce 直接访问关系型数据库(Mysql,Oracle),Hadoop提供了DBI…
在网络环境方面,作为分布式系统,Hadoop基于TCP/IP进行节点间的通信和传输. 在数据传输方面,广泛应用HTTP实现. 在监控.通知方面,Hadoop等分布式大数据软件则广泛使用异步消息队列等机制. 1. hadoop的概念及其发展历程 Hadoop是Apache开源组织的一个分布式计算开源框架,用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算. Hadoop框架中最核心设计:HDFS和MapReduce,HDFS实现存储,MapReduce实现原理分析…
转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败.所以用户在提交map/re…
1.  启动集群 2.  创建input路径(有关hadoop 的命令用 "hadoop fs"),input路径并不能在系统中查找到,可以使用 “hadoop fs -ls /” hadoop fs -mkdir /input 3.  创建测试文件(test1.txt,test2.txt) test1.txt Hello World Bye World test2.txt Hello Hadoop Goodbye Hadoop 4.  将测试文件放入/input 中 hadoop f…
map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败.所以用户在提交map/reduce作业时应该在一个合理的范围内,这样既可以增强系统负载匀衡,也可以降低任务失败的开销…
一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的 goalSize = totalSize / mapred.map.tasks inSize = max {mapred.min.split.size, minSplitSize} splitSize = max (minSize, min(goalSize, dfs.block.size)) 一个task的reduce数量,由partition决定. 在输入源是数…
深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input 占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成 启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导…
装载自http://www.cnblogs.com/dandingyy/archive/2013/03/01/2938462.html 有时可能需要对来自不同源的数据进行综合分析: 如下例子: 有Customers文件,每个记录3个域:Custom ID,    Name,     Phone Number Customers  Orders 1,Stephanie Leung,555-555-5555 3,A,12.95,02-Jun-2008 2,Edward Kim,123-456-789…
主要内容: mapreduce编程模型再解释: ob提交方式: windows->yarn windows->local : linux->local linux->yarn: 本地运行debug调试观察 mapreduce体系很庞大,我们需要一条合适的线,来慢慢的去理解和学习. 1.mapreduce编程模型和mapreduce模型实现程序之间的关系 1.1.mapreduce的编程模型 对mapreduce的总结: 如果只考虑数据处理的逻辑,撇开分布式的概念,其实mapredu…
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻辑确实是正确的,但都是在默认情况下的逻辑.其实如果进行一些客户化的设置,就可以控制了.…
本篇博客是金子在学习hadoop过程中的笔记的整理,不论看别人写的怎么好,还是自己边学边做笔记最好了. 1:shuffle阶段的排序(部分排序) shuffle阶段的排序可以理解成两部分,一个是对spill进行分区时,由于一个 分区包含多个key值,所以要对分区内的<key,value>按照key进行排序,即key值相同的一 串<key,value>存放在一起,这样一个partition内按照key值整体有序了. 第二部分并不是排序,而是进行merge,merge有两次,一次是ma…
用PHP编写Hadoop的MapReduce程序     Hadoop流 虽然Hadoop是用Java写的,但是Hadoop提供了Hadoop流,Hadoop流提供一个API, 允许用户使用任何语言编写map函数和reduce函数.Hadoop流动关键是,它使用UNIX标准流作为程序与Hadoop之间的接口.因此,任何程序只要可以从标准输入流中读取数据,并且可以把数据写入标准输出流中,那么就可以通过Hadoop流使用任何语言编写MapReduce程序的map函数和reduce函数.例如:bin/…
摘要:MapReduce程序进行数据去重. 关键词:MapReduce   数据去重 数据源:人工构造日志数据集log-file1.txt和log-file2.txt. log-file1.txt内容 2014-1-1    wangluqing 2014-1-2    root 2014-1-3   root 2014-1-4  wangluqing 2014-1-5  root 2014-1-6  wangluqing log-file2.txt内容 2014-1-1  root 2014-…
根据近期需要hadoop的MapReduce程序集成到一个大的应用C/C++书面框架.在需求make当自己主动MapReduce编译和打包的应用. 在这里,一个简单的WordCount1一个例子详细的实施细则,注意:hadoop版本号2.4.0. 源码包括两个文件.一个是WordCount1.java是详细的对单词计数实现的逻辑.第二个是CounterThread.java.当中简单的当前处理的行数做一个统计和打印.代码分别见附1. 编写makefile的关键是将hadoop提供的jar包的路径…
简单介绍一下项目背景——很简单,作死去接下老师的活,然后一干就是半个月,一直忙着从零基础到使用Hadoop中的MapReduce来解决一个实际问题,也就是用来计算一个数据量较大的二度朋友关系. 那么首先是我的上一篇博文:Hadoop之初体验 上一篇博文是将所有的准备前的环境搭建起来了,接下来就HDFS的一些基本的命令操作,那么这些命令如果是想要使用Hadoop的话,那么你就应当熟练的使用(类似于Linux中的命令,那么使用时稍微参考一下,时间不长就能够熟悉) 下边开始介绍MapReduce. 为…
http://blog.csdn.net/chaoping315/article/details/6221440 在hadoop 中一个Job中可以按顺序运行多个mapper对数据进行前期的处理,再进行reduce,经reduce后的结果可经个经多个按顺序执行的mapper进行后期的处理,这样的Job是不会保存中间结果的,并大大减少了I/O操作. 例如:在一个Job中,按顺序执行 MAP1->MAP2->REDUCE->MAP3->MAP4 在这种链式结构中,要将MAP2与REDU…
hadoop 执行中的setup run cleanup context的作用1.简介1) setup(),此方法被MapReduce框架仅且执行一次,在执行Map任务前,进行相关变量或者资源的集中初始化工作.若是将资源初始化工作放在方法map()中,导致Mapper任务在解析每一行输入时都会进行资源初始化工作,导致重复,程序运行效率不高!2) Mapper或Reducer运行3) cleanup(),此方法被MapReduce框架仅且执行一次,在执行完毕Map任务后,进行相关变量或资源的释放工…
Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本文主要是记录一写我在学习MapReduce时的一些琐碎的学习笔记, 方便自己以后查看.在调用API的时候,可能会需要maven依赖,添加依赖的包如下: <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.ap…
对单词个数统计的MapReduce的案例 Mapper类: package main.java.worldClient; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; /** * <KEYIN,VALUEIN,KEYOUT,VALUEOUT> * 分…
Hadoop基础-MapReduce的常用文件格式介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MR文件格式-SequenceFile 1>.生成SequenceFile文件(SequenceFileOutputFormat) The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across cl…