hadoop 数据倾斜】的更多相关文章

数据倾斜是指,map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完. 阿里的这篇比较实用,通俗易懂:数据倾斜总结 http://www.tbdata.org/archives/2109 有篇分析比较详细,如果需要使用可以细读:http://blo…
深入理解hadoop之数据倾斜 1.什么是数据倾斜 我们在用map /reduce程序执行时,有时候会发现reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完.这种现象就是因为key分布不均匀.散度不够导致的,也就是我们所说的数据倾斜. 2.数据倾斜产生的原因 在hive上执行j…
数据倾斜:就是大量的相同key被partition分配到一个分区里,map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长, 这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完. 解决方案: 1.增加jvm内存,这适用于第一种情况(唯一值非常少,极少数值有非常多的记录值(唯一值少于几千)),这种情况…
6.4.4 减小数据倾斜的性能损失 数据倾斜是数据中的常见情况.数据中不可避免地会出现离群值(outlier),并导致数据倾斜.这些离群值会显著地拖慢MapReduce的执行.常见的数据倾斜有以下几类: 数据频率倾斜——某一个区域的数据量要远远大于其他区域. 数据大小倾斜——部分记录的大小远远大于平均值. 在map端和reduce端都有可能发生数据倾斜.在map端的数据倾斜会让多样化的数据集的处理效率更低.在reduce端的数据倾斜常常来源于MapReduce的默认分区器. 数据倾斜会导致map…
Hadoop基础-MapReduce的数据倾斜解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据倾斜简介 1>.什么是数据倾斜 答:大量数据涌入到某一节点,导致此节点负载过重,此时就产生了数据倾斜. 2>.处理数据倾斜的两种方案 第一:重新设计key: 第二:设计随机分区: 二.模拟数据倾斜 screw.txt 文件内容 1>.App端代码 /* @author :yinzhengjie Blog:http://www.cnblogs.com/yinzh…
转自:http://www.cnblogs.com/xuxm2007/archive/2011/09/01/2161929.html http://www.geminikwok.com/2011/04/02/hadoop-job解决大数据量关联时数据倾斜的一种办法/ 数据倾斜是指,map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为…
转自:http://my.oschina.net/leejun2005/blog/100922 最近几次被问到关于数据倾斜的问题,这里找了些资料也结合一些自己的理解. 在并行计算中我们总希望分配的每一个task 都能以差不多的粒度来切分并且完成时间相差不大,但是集群中可能硬件不同,应用的类型不同和切分的数据大小不一致总会导致有部分任务极大的拖慢了整个任务的完成时间,硬件不同就不说了,应用的类型不同其中就比如page rank 或者data mining 里面一些计算,它的每条记录消耗的成本不太一…
数据倾斜介绍 在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更…
原创文章,同步首发自作者个人博客转载请务必在文章开头处注明出处. 摘要 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等. 为何要处理数据倾斜(Data Skew) 什么是数据倾斜 对Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜. 何谓数据倾斜?数据倾斜指的是,并行处理的数据集中,某一部分(如Spar…
[版权申明:本文系作者原创,转载请注明出处] 文章出处:http://blog.csdn.net/sdksdk0/article/details/51675005 作者: 朱培          ID:sdksdk0 Hive环境的搭建在这里也不重复说了,安装配置可以查看我的这篇文章:http://blog.csdn.net/sdksdk0/article/details/51512031.在这里主要是分享一下HQL语句实践及其函数的基本使用. 一.Hive的基本概念 在Hive中没有插入操作,…
0. 说明 数据倾斜及解决方法的介绍与代码实现 1. 介绍 [1.1 数据倾斜的含义] 大量数据发送到同一个节点进行处理,造成此节点繁忙甚至瘫痪,而其他节点资源空闲 [1.2 解决数据倾斜的方式] 重新设计 Key(配合二次 MR 使用) 随机分区 伪代码如下: RandomPartition extends Partitioner{ return r.nextInt() } 2. 重新设计 Key 代码编写 [2.1 WCMapper.java] package hadoop.mr.datas…
1.什么是数据倾斜? 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点 2.Hadoop 框架的特性 A.不怕数据大,怕数据倾斜 B.Jobs 数比较多的作业运行效率相对比较低,如子查询比较多 C. sum,count,max,min 等聚集函数,通常不会有数据倾斜问题 3.主要表现 任务进度长时间维持在 99%或者 100%的附近,查看任务监控页面,发现只有少量 reduce 子任务未完成,因为其处理的数据量和其他的 reduce 差异过大. 单一 reduce 处理的记录数和平均记…
数据的倾斜: 主要就是合理的控制我们的map个数以及reduce个数 第一个问题:maptask的个数怎么定的???与我们文件的block块相关,默认一个block块就是对应一个maptask 第二个问题:reduceTask的个数怎么定的???是我们自己手动设置的,爱设几个设几个,没人管你 第三个问题:是不是maptask的个数越多越好:不一定:有时候有些小文件,都要启动一个maptask,分配资源的时间超过了数据处理的时间 减少mapTask的个数:设置map端的小文件合并:使用combin…
目录 什么是数据倾斜 Hadoop框架的特性 主要表现 容易数据倾斜的情况 产生数据清洗的原因 业务场景 空值产生的数据倾斜 不同数据类型关联产生数据倾斜 大小表关联查询产生数据倾斜 一.什么是数据倾斜 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点 二.Hadoop框架的特性 不怕数据大,怕数据倾斜 jobs数比较多的作业运行效率相对比较低,如子查询比较多 sum.count.max.min等聚合函数,通常不会有数据倾斜问题 三.主要表现 任务进度长时间维持在99%或者100%的附…
本文转发自技术世界,原文链接 http://www.jasongj.com/spark/skew/ Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势  发表于 2017-02-28 |  更新于 2017-10-17 | 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitioner,使用Map侧Join代替Reduce侧Join,给倾斜Key加上随机前缀等. 摘要 本文结合实例详细阐明了Sp…
1.Map端Join解决数据倾斜   1.Mapreduce中会将map输出的kv对,按照相同key分组(调用getPartition),然后分发给不同的reducetask 2.Map输出结果的时候调用了Partitioner组件(返回分区号),由它决定将数据放到哪个区中,默认的分组规 则为:根据key的hashcode%reducetask数来分发,源代码如下: public class HashPartitioner<K, V> extends Partitioner<K, V&g…
数据倾斜:由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点.map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完,此称之为数据倾斜. Hadoop计算框架的特性: 不怕数据大,怕数据倾斜: job数比较多的作业运行效率相对比较低,如子查…
一.Hive-sql优化 #增加reducer任务数量(拉取数量分流) ; #在同一个sql中的不同的job是否可以同时运行,默认为false set hive.exec.parallel=true; #增加同一个sql允许并行任务的最大线程数 ; #设置reducer内存大小 ; set mapreduce.reduce.java.opts=-Xmx3584m; -- -Xmx 设置堆的最大空间大小. #mapjoin相关设置,小表加载到内存,无reduceset hive.mapjoin.s…
date: 2020-04-21 19:38:00 updated: 2020-04-24 10:26:00 DataSkew 数据倾斜 1. Hive 里的数据倾斜 1.1 null值 空值 尽量提前过滤,或者把无效值替换成随机字符串,比如 if(a is null or trim(a) = "" or trim(a) = "NULL", rand(1)+""),由于是无效值所以不影响最终的取数,但是因为把关联字段打散了,所以就不会把所有的ke…
什么是数据倾斜 对Spark/Hadoop这样的大数据系统来讲,数据量大并不可怕,可怕的是数据倾斜. 何谓数据倾斜?数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 如果数据倾斜没有解决,完全没有可能进行性能调优,其他所有的调优手段都是一个笑话.数据倾斜是最能体现一个spark大数据工程师水平的性能调优问题. 数据倾斜如果能够解决的话,代表对spark运行机制了如指掌. 数据…
Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措. 今天我们不扯大篇理论,直接以例子来实践,排查是否出现了数据倾斜,具体是哪段代码导致的倾斜,怎么解决这段代码的倾斜. 当执行过程中任务卡在 99%,大概率是出现了数据倾斜,但是通常我们的 SQL 很大,需要判断出是哪段代码导致的倾斜,才能利于我们解决倾斜.通过下面这个非常简单的例子来看下如何定位产…
1.数据倾斜 数据倾斜指的是,并行处理的数据集中,某一部分(如Spark或Kafka的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 数据倾斜俩大直接致命后果. 1.数据倾斜直接会导致一种情况:Out Of Memory. 2.运行速度慢. 主要是发生在Shuffle阶段.同样Key的数据条数太多了.导致了某个key(下图中的80亿条)所在的Task数据量太大了.远远超过其他Task所处理的数据量. 一个经验结论是:一般情况下,OOM的原因都是…
场景一: api:  textFile("hfds://....").map((key,value)).reduceByKey(...).map(实际的业务计算逻辑) 场景:hdfs的某个文件有183个block,他们的大小分布非常不均匀时,比如有的是200M,有的是1M,有的是10K.此时spark计算非常非常慢,通过web ui监视发现,有的task处理了好几百M的数据,有的 task之处理了几k,导致严重的数据倾斜. 其中stage0阶段有183个task,这个阶段几乎没有什么计…
Hive中三种join map join (小表join大表,将小表加入到内存) 设置map join: hive.auto.convert.join=true hive.mapjoin.smalltable.filesize=2500000; PS:如果有一张表是小表便自动执行mapjoin,根绝表大小是否超过2500000区分 隐式的执行 /*+MAPJOIN(tb_name)*/ reduce join(大表join大表,效率很低) SMB join(sort merge bucket j…
hadoop:数据流转图(基于hadoop 0.18.3):通过一个最简单的例子来说明hadoop中的数据流转. hadoop:数据流转图(基于hadoop 0.18.3): 这里使用一个例子说明hadoop中的数据流转过程,这个例子是统计一些文章中词汇的总数.首先files表示这些需要统计词汇的文章.   首先,hadoop会把初始数据分配到各个机器的mapper任务中,图中的数字表示数据的依次流向步骤.   1.格式化输入,默认情况下,hadoop会使用 TextInputFormate,也…
上班之余抽点时间出来写写博文,希望对新接触的朋友有帮助.明天在这里和大家一起学习一下hadoop数据 Hadoop在淘宝和支付宝的应用从09年开始,用于对海量数据的离线处置,例如对日志的分析,也涉及内容部分,结构化数据等.应用Hadoop重要基于可扩展性的斟酌,规模从当初的3-4百节点增长到明天单一集群3000节点以上,2-3个集群,支付宝的集群规模也达700台,应用Hbase,个人消费记载,key-value型. 阿里对Hadoop的源码做了如下修改: 改良Namenode单点问题 增加安全性…
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的 Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均 值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个 reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在…
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成. 在hive中产生数据倾斜的原因和解决方法: 1)group b…
Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据    • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hive表中的数据本身很不均匀(比如某个 key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表 执行某个分析操作,那么比较适合使用这种技术方案.    • 方案实现思路:此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对…
倾斜的原因: 使map的输出数据更均匀的分布到reduce中去,是我们的最终目标.由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜.大量经验表明数据倾斜的原因是人为的建表疏忽或业务逻辑可以规避的. 解决思路: Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在 具体办法: 内存优化和I/O优化: 驱动表:使用大表做驱动表,以防止内存溢出:Join最右边的表是驱动表:…