在C#下使用TensorFlow.NET训练自己的数据集 今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理.TensorFlow.NET是基于 .NET Standard 框架的完整实现的TensorFlow,可以支持 .NET Framework 或 .NET CORE , TensorFlow.NET…
https://blog.csdn.net/malvas/article/details/90776327…
https://www.jianshu.com/p/a672f702e596 本文记录了在ubuntu16.04下使用py-faster-rcnn来训练自己的数据集的大致过程. 在此之前,已经成功配置过了caffe-gpu,使用的显卡是GTX1080ti,安装的cuda8.0.61+cudnn v5.1,caffe-gpu的配置过程可以参考:Ubuntu16.04配置caffe-GPU环境. 第一步:制作自己的数据集 首先,为了方便,可以将自己的训练图像名称改成PASCAL VOC格式,比如我自…
[写在前面] 用Tensorflow(TF)已实现好的卷积神经网络(CNN)模型来训练自己的数据集,验证目前较成熟模型在不同数据集上的准确度,如Inception_V3, VGG16,Inception_resnet_v2等模型.本文验证Inception_resnet_v2基于菜场实拍数据的准确性,测试数据为芹菜.鸡毛菜.青菜,各类别样本约600张,多个菜场拍摄,不同数据源. 补充:自己当初的计划是用别人预训练好的模型来再训练自己的数据集已使可以完成新的分类任务,但必须要修改代码改网络结构,并…
上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首先,利用input_data.py来下载并导入mnist数据集.在这个过程中,数据集会被下载并存储到名为"MNIST_data"的目录中. import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=T…
现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过直接调用 TensorFlow 的 C/C++ 接口来导入 TensorFlow 预训练好的模型. 1.环境配置 点此查看 C/C++ 接口的编译 2. 导入预定义的图和训练好的参数值 // set up your input paths const string pathToGraph = "/ho…
现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过 C/C++ 间接调用 Python 的方式来实现在 C/C++ 程序中调用 TensorFlow 预训练好的模型. 1. 环境配置 为了能在 C/C++ 中调用 Python,我们需要配置一下头文件和库的路径,本文以 Code::Blocks 为例介绍. 在 Build -> Project opt…
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练.而这篇文章是想自己完成LeNet网络来训练自己的数据集.LeNet主要用来进行手写字符的识别与分类,下面记录一下自己学习的过程. 我的学习步骤分为以下四步: 1,温习LeNet-5的网络层 2,使用LeNet-5训练MNIST数据集 3,使用LeNet-5训练TFRecord格式的MNIST数据集…
如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统) 一.环境配置 1. Python3.7.x(注:我用的是3.7.3.安装好后把python.exe的路径加入到全局环境变量path中,方便后续命令) 2. Tensorflow1.13.1(注:目前暂时还不能用tensorflow2.x,因为开源社区还没有针对Windows10+tensorflow2.x的object_detection api参考资料.) 3. P…
上一篇日志(http://www.cnblogs.com/huidong/p/5426556.html)写了如何在Windows下安装Docker,并且在VM上安装TensorFlow. 在Window下每次启动TensorFlow略麻烦,就是每次都要保证启动VM.比如我的VM的名字叫vdocker,那么启动它并且regenerate证书需要用. $docker-machine start vdocker $docker-machine regenerate-certs vdocker 检查VM…
https://blog.csdn.net/hjimce/article/details/61197190  tensorflow分布式训练 https://cloud.tencent.com/developer/article/1006345  分布式 TensorFlow,分布式原理.最佳实践 https://www.jianshu.com/p/fdb93e44a8cc  TensorFlow分布式全套(原理,部署,实例) https://zhuanlan.zhihu.com/p/30914…
今天终于动手折腾实验室的服务器啦!由于权限原因,只能在自己的路径下安装TensorFlow. 1. 下载安装Anaconda 官网下载地址:https://www.anaconda.com/download/#linux 下载对应版本,上传到服务器,执行: bash Anaconda3-2018.12-Linux-x86_64.sh 名称改成自己的相应版本. 如果不在意细节,一路回车加‘yes’即可安装完成.注意细节的话:一直回车完协议输入‘yes’,之后会让选择安装目录,选择完成后,询问是否将…
注意: 1.目前Anaconda 更新原命令activate tensorflow 改为 conda activate tensorflow 2. 目前windows with anaconda 可以使用python 3.6,需要注意,如使用3.6,则需注意在创建conda环境时需使python=3.6 3.官网更新为CUDA9和cuDNN6,实测CUDA9和cuDNN7完美运行,CUDA9和cuDNN6大家可以试一下 TensorFlow 1.5.0 现已公开,如果您在Windows或Linu…
1.什么是tensorflow TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. tensorflow类型分为两种, 你必须选择其一来进行安装: 仅支持 CPU 的 TensorFlow.如果您的系统没有 NVID…
Windows10 64位下安装TensorFlow谷歌人工智能系统已官方原生支持 GitHub - tensorflow/tensorflow: Computation using data flow graphs for scalable machine learninghttps://github.com/tensorflow/tensorflow TensorFlow官方文档中文版_TensorFlow中文教程http://wiki.jikexueyuan.com/project/ten…
TensorFlow笔记-02-Windows下搭建TensorFlow环境(win版非虚拟机) 本篇介绍的是在windows系统下,使用 Anaconda+PyCharm,不使用虚拟机,也不使用 Linux 安装 Anaconda 这个相信有很多人都在用,所以简单说一下 如果没有安装可以直接去Anaconda官网下载:https://www.anaconda.com/download/ 提示:安装时记住安装目录 默认安装就可以 如果安装 Anaconda 有问题请参照: windows下Ana…
不多说,直接上干货! Installing TensorFlow on Windows的官网 https://www.tensorflow.org/install/install_windows 首先,要说明的是,在tensorflow 0.12.0开始支持Windows下安装了.tensorflow 0.12.0之前是只支持Mac和Linux系统. 我的电脑配置: 系统 :Windows7 64位 CPU :Intel(R) Core(TM)i5-3470 @3.2GHz 安装内存:8G 显卡…
Tensorflow Mask-RCNN训练识别箱子的模型…
首先在官网下载Anaconda https://www.anaconda.com/download/ 安装时注意 勾选第一个,增加环境变量 安装好后再windows界面打开Anaconda Prompt conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes 设置清华镜像,下载更快一点 之后 conda…
windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速 原文见于:http://www.jianshu.com/p/c245d46d43f0 作者 xushiluo 关注 2016.12.21 20:32* 字数 3096 阅读 12108评论 18喜欢 19 写在前面的话 2016年11月29日,Google Brain 工程师团队宣布在 TensorFlow 0.12 中加入初步的 Windows 支持.但是目前只支持64位,而且Py…
不多说,直接上干货! Installing TensorFlow on Windows的官网 https://www.tensorflow.org/install/install_windows 首先,要说明的是,在tensorflow 0.12.0开始支持Windows下安装了.tensorflow 0.12.0之前是只支持Mac和Linux系统. 安装环境要求: Windows 64位 python 3.5 pip 9.0.1 tensorflow 0.12.0 cuda8.0 cudnn5…
本文目录 引言 基于Anaconda的tensorflow安装 1 下载linux版本的Anaconda安装包 2 安装Anaconda 利用anaconda安装tensorflow 1 建立一个 conda 计算环境 2 激活环境使用 conda 安装 TensorFlow 3 安装tensorflow 4 如何在jupyter中使用tensorflow 总结 利用Docker安装tensorflow 1 安装docker 2 创建tensorflow的image 安装过程中的一些小问题记录…
# 安装 2.7 环境conda create -n python2. python= conda activate python2. # 安装 1.1.0 gpu版本pip # 配置环境变量export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/ex…
本系列将利用Docker和阿里云容器服务,帮助您上手TensorFlow的机器学习方案 第一篇:打造TensorFlow的实验环境 第二篇:轻松搭建TensorFlow Serving集群 第三篇:打通TensorFlow持续训练链路 第四篇:利用Neural Style的TensorFlow实现,像梵高一样作画 第五篇:轻松搭建分布式TensorFlow训练集群(上) 本文是该系列中的第三篇文章, 将为您介绍如何利用阿里云的服务快速搭建TensorFlow从训练到服务的交付平台. 随着goog…
首先声明几点: 安装tensorflow是基于Python的,并且需要从Anaconda仓库中下载. 所以我们的步骤是:先下载Anaconda,再在Anaconda中安装一个Python,(你的电脑里可能本来已经装了一个Python环境,但是Anaconda中的Python是必须再装的),然后再下载安装tensorflow. 因为anaconda支持的python版本与TensorFlow支持的python版本不一致可能会导致安装出错,因此下载时候一定不能下载最新版本的anaconda,要先查询…
pip install --upgrade https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.14.0-py3-none-any.whl 附:在Python3.7下安装tensorflow 因为现在tensorflow还没有官方添加对Python3.7的支持,所以用pip直接安装是搜索不到合适的tensorflow包的,这时候就需要直接从.whl安装.具体方法为(以Mac为例): pip install https://…
http://blog.csdn.net/sinat_16823063/article/details/53946549 Tensorflow创建和读取17flowers数据集 标签: tensorflow 2016-12-30 21:43 1548人阅读 评论(8) 收藏 举报  分类: 深度学习(4)      近期开始学习tensorflow,看了很多视频教程以及博客,大多数前辈在介绍tensorflow的用法时都会调用官方文档里给出的数据集,但是对于我这样的小白来说,如果想训练自己的数据…
目标检测算法SSD之训练自己的数据集 prerequesties 预备知识/前提条件 下载和配置了最新SSD代码 git clone https://github.com/weiliu89/caffe ~/work/ssd cd $_ git checkout ssd 编译caffe 下载必要的模型(包括prototxt和caffemodel): 运行了evaluation和webcam的例子,会提示caffe的import报错.添加pycaffe路径到PYTHONPATH环境变量,或者写一个_…
[引言] 最近在用可变卷积的rfcn 模型迁移训练自己的数据集, MSRA官方使用的MXNet框架 环境搭建及配置:http://www.cnblogs.com/andre-ma/p/8867031.html 一 参数修改: 1.1  ~/Deformable-ConvNets/experiments/rfcn/cfgs/resnet_v1_101_voc0712_rfcn_dcn_end2end_ohem.yaml  文件中修改两个参数 (yaml文件包含对应训练脚本的一切配置信息和超参数)…
默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可).即训练数据集:/data/train/0./data/train/1  训练数据集:/data/val/0./data/val/1. 数据准备好之后,创建记录数据文件和对应标签的txt文件 (1)创建训练数据集的train.txt import os f =open(r'tr…