4. Hadoop相关配置及Executor环境变量的设置 4.1 Hadoop相关配置信息 默认情况下,Spark使用HDFS作为分布式文件系统,所以需要获取Hadoop相关配置信息的代码如下: 获取的配置信息包括: 将Amazon S3文件系统的AccessKeyId和SecretAccessKey加载到Hadoop的Configuration: 将SparkConf中所有以spark.hadoop. 开头的属性都复制到Hadoop的Configuration: 将SparkConf的属性s…
2. 创建执行环境SparkEnv SparkEnv是Spark的执行环境对象,其中包括众多与Executor执行相关的对象.由于在local模式下Driver会创建Executor,local-cluster部署模式或者Standalone部署模式下Worker另起的CoarseGrainedExecutorBackend进程中也会创建Executor,所以SparkEnv存在于Driver或者CoarseGrainedExecutorBackend进程中.创建SparkEnv主要使用Spar…
3. 创建并初始化Spark UI 任何系统都需要提供监控功能,用浏览器能访问具有样式及布局并提供丰富监控数据的页面无疑是一种简单.高效的方式.SparkUI就是这样的服务. 在大型分布式系统中,采用事件监听机制是最常见的.为什么要使用事件监听机制?假如SparkUI采用Scala的函数调用方式,那么随着整个集群规模的增加,对函数的调用会越来越多,最终会受到Driver所在JVM的线程数量限制而影响监控数据的更新,甚至出现监控数据无法及时显示给用户的情况.由于函数调用多数情况下是同步调用,这就导…
1. SparkContext概述 注意:SparkContext的初始化剖析是基于Spark2.1.0版本的 Spark Driver用于提交用户应用程序,实际可以看作Spark的客户端.了解Spark Driver的初始化,有助于读者理解用户应用程序在客户端的处理过程. Spark Driver的初始化始终围绕着SparkContext的初始化.SparkContext可以算得上是所有Spark应用程序的发动机引擎,轿车要想跑起来,发动机首先要启动.SparkContext初始化完毕,才能向…
12. Spark环境更新 在SparkContext的初始化过程中,可能对其环境造成影响,所以需要更新环境,代码如下: SparkContext初始化过程中,如果设置了spark.jars属性,spark.jars指定的jar包将由addJar方法加入httpFileServer的jarDir变量指定的路径下.spark.files指定的文件将由addFile方法加入httpFileServer的fileDir变量指定的路径下.见代码: postEnvironmentUpdate的实现见代码,…
9. 启动测量系统MetricsSystem MetricsSystem使用codahale提供的第三方测量仓库Metrics.MetricsSystem中有三个概念: Instance:指定了谁在使用测量系统: Source:指定了从哪里收集测量数据: Sink:指定了从哪里输出测量数据: Spark按照Instance的不同,区分为Master.Worker.Application.Driver和Executor. Spark目前提供的Sink有ConsoleSink.CsvSink.Jmx…
5. 创建任务调度器TaskScheduler TaskScheduler也是SparkContext的重要组成部分,负责任务的提交,并且请求集群管理器对任务调度.TaskScheduler也可以看作任务调度的客户端.创建TaskScheduler的代码如下: createTaskScheduler方法会根据master的配置匹配部署模式,创建TaskSchedulerImpl,并生成不同的SchedulerBackend.为了使读者更容易理解Spark的初始化流程,故以local模式为例,ma…
8.初始化管理器BlockManager 无论是Spark的初始化阶段还是任务提交.执行阶段,始终离不开存储体系.Spark为了避免Hadoop读写磁盘的I/O操作成为性能瓶颈,优先将配置信息.计算结果等数据存入内存,这极大地提升了系统的执行效率.正是因为这一关键决策,才让Spark能在大数据应用中表现出优秀的计算能力.BlockManager是在sparkEnv中被创建的,代码如下: 8.1 存储体系概述 8.1.1 块管理器BlockManager的实现 块管理器BlockManager是S…
7. TaskScheduler的启动 第五节介绍了TaskScheduler的创建,要想TaskScheduler发挥作用,必须要启动它,代码: TaskScheduler在启动的时候,实际调用了backend的start方法,即同时启动了backend.local模式下,这里的backend是localSchedulerBackend.在TaskScheduler初始化时传入localSchedulerBackend.以LocalSchedulerBackend为例,启动LocalSched…
6.创建和启动DAGScheduler DAGScheduler主要用于在任务正式交给TaskSchedulerImpl提交之前做一些准备工作,包括:创建Job,将DAG中的RDD划分到不同的Stage,提交Stage,等等.创建DAGScheduler的代码如下: DAGScheduler的数据结构主要维护jobId和stageId的关系.Stage.ActiveJob.以及缓存的RDD的partitions的位置信息,见代码: DAGSchedulerEventProcessLoop能处理的…
Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著   ISBN 978-7-121-25420-8 2015年3月出版 定价:68.00元 304页 16开 编辑推荐 Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐 1.本书全面.系统地介绍了Spark源码,深入浅出,…
Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐1.本书全面.系统地介绍了Spark源码,深入浅出,细致入微2.提供给读者一系列分析源码的实用技巧,并给出一个合理的阅读顺序3.始终抓住资源分配.消息传递.容错处理等基本问题,抽丝拨茧4.一步步寻找答案,所有问题迎刃而解,使读者知其然更知其所以然 内容简介 书籍计算机书籍 <Apache Spark源码剖析>以Spark…
菜鸟nginx源码剖析数据结构篇(四)红黑树ngx_rbtree_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csdn.net/chen19870707 Date:October 27h, 2014 1.ngx_rbtree优势和特点 ngx_rbtree是一种使用红黑树实现的关联容器,关于红黑树的特性,在<手把手实现红黑树>已经详细介绍,这里就只探讨ngx_rbtree与众不同的地方:ngx_rbtree红黑树…
Spark源码分析之-scheduler模块 这位写的非常好, 让我对Spark的源码分析, 变的轻松了许多 这里自己再梳理一遍 先看一个简单的spark操作, val sc = new SparkContext(--)val textFile = sc.textFile("README.md") textFile.filter(line => line.contains("Spark")).count()   1. SparkContext 这是Spark的…
##SparkContext启动过程 基于spark 2.1.0  scala 2.11.8 spark源码的体系结构实在是很庞大,从使用spark-submit脚本提交任务,到向yarn申请容器,启动driver进程,启动executor进程,到任务调度,shuffle过程等等,模块众多,而且每个模块都很大,所以要全部看完啃透几乎不可能,一是经历不允许,而是有些边缘性的模块主要起到辅助的功能,没有什么高深的技术含量,花时间性价比不高.因此我决定略去前面提交任务,向yarn提交任务,申请资源,启…
由于近期准备深入研究一下Spark的核心源码,所以开了这一系列用来记录自己研究spark源码的过程! 想要读源码,那么第一步肯定导入spark源码啦(笔者使用的是IntelliJ IDEA),在网上找了一圈,尝试了好几种方法都没有成功,最终通过自己摸索出了一种非常简单的方式(只需要两步即可!) 环境要求 IntelliJ IDEA(Community版本即可) maven(当然jdk是不可少的) 具体信息如下: C:\Users\Administrator>mvn -version Apache…
引言 我们知道在application中每存在一个action操作就会触发一个job,那么spark底层是怎样触发job的呢?接下来我们用一个wordcount程序来剖析一下job的触发机制. 解析wordcount源码 val lines = sc.textFile()   val words = lines.flatMap(line => line.split(" "))   val pairs = words.map(word => (word, 1))   val…
SparkContext可以说是Spark应用的发动机引擎,Spark Drive的初始化围绕这SparkContext的初始化. SparkContext总览 sparkcontxt的主要组成部分 sparkEnv:spark运行环境,Executor是处理任务的执行器,依赖于SparkEnv的环境.Driver中也包含SparkEnv,为了保证Local模式下任务执行.此外,SparkEnv还包含serializerManager.RpcEnv.BlockManager.mapOutputT…
引言 对于Spark开发人员来说,了解stage的划分算法可以让你知道自己编写的spark application被划分为几个job,每个job被划分为几个stage,每个stage包括了你的哪些代码,只有知道了这些之后,碰到某个stage执行特别慢或者报错,你才能快速定位到对应的代码,对其进行性能优化和排错. stage划分原理与源码 接着上期内核源码(五)的最后,每个action操作最终会调用SparkContext初始化时创建的DAGSchedule的runJob方法创建一个job: 那么…
本章导读 RDD作为Spark对各种数据计算模型的统一抽象,被用于迭代计算过程以及任务输出结果的缓存读写.在所有MapReduce框架中,shuffle是连接map任务和reduce任务的桥梁.map任务的中间输出要作为reduce任务的输入,就必须经过shuffle,shuffle的性能优劣直接决定了整个计算引擎的性能和吞吐量.相比于Hadoop的MapReduce,我们可以看到Spark提供多种计算结果处理的方式,对shuffle过程进行了优化. 本章将继续以word count为例讲解.…
一. 状态改变机制源码分析 在剖析Master核心的资源调度算法之前,让我们先来看看Master的状态改变机制. Driver状态改变  可以看出,一旦Driver状态发生改变,基本没有好事情,后果要么是删除Driver,要么是报异常!   removeDriver方法:   Executor状态改变  可以看出,如果Executor时非正常退出,会尝试重新调度(启动)该Executor,直到该Application达到了最大的重试次数10次.   removeApplication方法 二.…
接着上期内核源码(六)的最后,DAGSchedule会将每个Job划分一系列stage,然后为每个stage创建一批task(数量与partition数量相同),并计算其运行的最佳位置,最后针对这一批task创建一个TaskSet对象,调用submitTasks方法提交TaskSet到TaskSchedule.那么这篇文章我们来剖析TaskScheduler接收到TaskSet后会进行的一系列操作.    taskScheduler.submitTasks( new TaskSet(tasks.…
源码之前,了无秘密  ——侯杰 序列式容器 关联式容器 array(build in) RB-tree vector set heap   map priority-queue multiset list multimap slist hashtable deque hash_set stack(配接器) hash_map queue(配接器) hash_multiset hash_multimap 第四章:序列式容器 C++语言本身提供了一个序列式容器array array:分配静态空间,一旦…
1.什么是序列式容器?什么是关联式容器? 书上给出的解释是,序列式容器中的元素是可序的(可理解为可以按序索引,不管这个索引是像数组一样的随机索引,还是像链表一样的顺序索引),但是元素值在索引顺序的方向不一定是有序的.下面这幅图是SGI STL中的各种容器,图中内缩表示内含关系,类似于UML类图里面的组合关系.比如说heap内含一个vector,表示heap是借由vector实现的. 2.vector vector概述 vector的空间是动态分配的,对vector进行size()操作得到的结果是…
1. 任务概述 任务提交与执行过程: 1) build operator DAG:此阶段主要完成RDD的转换及DAG的构建: 2) split graph into stages of tasks:此阶段主要完成finalStage的创建与Stage的划分,做好Stage与Task的准备工作后,最后提交Stage与Task: 3) launch tasks via cluster manager:使用集群管理器(Cluster manager)分配资源与任务调度,对于失败的任务还会有一定的重试与…
上篇文章我们剖析了Master的原理和源码,知道了当Master使用资源分配算法将资源分配完成后,就会给对应的Worker发送启动Driver或者Executor的消息,那么Worker收到这些消息后,具体是怎么启动Driver或者Executor的呢?这篇文章就让我们深入剖析一下Worker的原理和源码. 一.启动Driver Worker接收到了Master发送过来的启动Driver的信息,LaunchDriver函数首先启动一个DriverRunner线程. worker.actor !…
RDD的四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToOneDependency.RangeDepende…
SparkContext概述 sparkContext是所有的spark应用程序的发动机引擎,就是说你想要运行spark程序就必须创建一个,不然就没的玩了.sparkContext负责初始化很多东西,当其初始化完毕以后,才能像spark集群提交任务,这个地方还有另一个管理配置的类sparkConf,它主要负责配置,检查,修改等工作,这会在后期源码阅读的时候你会经常看到的一个参数conf,说的就是它. 1.代码小实例 object sparktest_hivesql { def main(args…
如下,是 spark 源码分析系列的一些文章汇总,持续更新中...... Spark RPC spark 源码分析之五--Spark RPC剖析之创建NettyRpcEnv spark 源码分析之六--Spark RPC剖析之Dispatcher和Inbox.Outbox剖析 spark 源码分析之七--Spark RPC剖析之RpcEndPoint和RpcEndPointRef剖析 spark 源码分析之八--Spark RPC剖析之TransportContext和TransportClie…
上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RDD的整体概括 文档说明如下: RDD全称Resilient Distributed Dataset,即分布式弹性数据集.它是Spark的基本抽象,代表不可变的可分区的可并行计算的数据集. RDD的特点: 1. 包含了一系列的分区 2. 在每一个split上执行函数计算 3. 依赖于其他的RDD 4.…