是我想复杂了 首先发现大于关系构成了一棵二叉树的结构,于是树形dp 设f[i]为i点的方案数,si[i]为i点的子树大小,递推式是\( f[i]=f[i*2]*f[i*2+1]*C_{si[i]-1}^{si[i*2]} \) 组合数用Lucas求 #include<iostream> #include<cstdio> using namespace std; long long n,p,f[5000005],jc[5000005],s[5000005]; long long ks…
BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来 T 行,每行两个整数 n.m. T=500000,n≤1000000,m≤1000000 Output 输出 T 行,每行一个数,…
题面 传送门 思路 一句话题意: 给出一个长度为 n 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 a和 b (b 在 a 前面),$C_a^b mod 2=1$,答案对1e9+7取模 显然膜2余1是个非常特殊的性质,应当好好加以利用 和组合数取模有关的东西,有Lucas定理,因此我们来试着推一推 $C_n^m%2=C_{n%2}^{m%2}\ast C_{n/2}^{m/2}$ 这个玩意的意义,显然就是把n和m转成二进制,那么只要没有某一位上n是0m是1(此时$…