论文题目:Beyond OCR + VQA: Involving OCR into the Flow for Robust and Accurate TextVQA 论文链接:https://dl.acm.org/doi/abs/10.1145/3474085.3475606 一.任务概述 视觉问答任务(VQA):将图像和关于图像的自然语言问题作为输入,并生成自然语言答案作为输出.  文本视觉问答任务(TextVQA):面向文字识别的问答任务. 二.Baseline 2.1 Baseline 1…
 论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引言     1.探索人脸关于姿势.年龄.遮挡.光照.表情的不变性,通过特征工程人工构造feature,结合PCA.LDA.支持向量机等机器学习算法.     2.流程 人脸检测,返回人脸的bounding box 人脸对齐,用2d或3d的参考点,去对标人脸 人脸表达,embed 人脸匹配,匹配分数 二.人脸识…
Xiang Bai--[CVPR2015]Symmetry-Based Text Line Detection in Natural Scenes 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 参考文献 作者和相关链接 作者 白翔个人主页 论文下载 代码下载 方法概括 Step 1: 采用多尺度滑窗检测文本线的中心像素点,用对称特征和表观特征训练的随机森林得到候选的字符像素区域(两种特征是作者自己提的,文章亮点所在): Step 2: 利用字符像素的角…
论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,IoU是最流行的评价准则.然而,在对边界框的参数进行优化时,常用到距离损失,而按照IOU的标准则是取其最大值,二者之间是有一定差别的.对一个标准进行优化的目标函数是其标准本身.比如,对于2D的坐标对齐的边界框,可以直接使用IoU作为回归损失.然而,该方法存在一个弊端,就是当两个边界框不发生重叠时,Io…
转载请注明出处:https://www.cnblogs.com/White-xzx/ 原文地址:https://arxiv.org/abs/1702.05891 Caffe-code:https://github.com/zhufengx/SRN_multilabel 如有不准确或错误的地方,欢迎交流~ 空间正则化网络(Spatial Regularization Network, SRN),学习所有标签间的注意力图(attention maps),并通过可学习卷积挖掘标签间的潜在关系,结合正则…
文章:Deep Mutual Learning 出自CVPR2017(18年最佳学生论文) 文章链接:https://arxiv.org/abs/1706.00384 代码链接:https://github.com/YingZhangDUT/Deep-Mutual-Learning…
✿ 阅读源码思路: 先跳过非重点,深入每个方法,进入的时候可以把整个可以理一下方法的执行步骤理一下,也可以,理到某一步,继续深入,回来后,接着理清除下面的步骤. ✿ 阅读本文的准备工作,预习一下SpringMVC的执行流程 ■ 解释一下,为什么标题是验证SpringMVC执行流程: 不知道小伙伴有没有做过物理实验的验证实验,道理是一样的,举个高中生都做过的物理实验吧----自由落体实验,这个实验是通过小钢球做抛物运动,验证重力加速度的g值是9.8.对于本文,咱的做法是通过调试来验证SpringM…
Weilin Huang--[AAAI2016]Reading Scene Text in Deep Convolutional Sequences 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 参考文献 作者和相关链接 论文下载 黄伟林主页 , 乔宇,汤晓欧 所有作者 方法概括 解决问题:单词识别 主要流程:maxout版的CNN提取特征,RNN(LSTM)进行分类,CTC对结果进行调整.整个流程端到端训练和测试,和白翔的CRNN(参考文献1)方法几…
Xiang Bai--[TIP2014]A Unified Framework for Multi-Oriented Text Detection and Recognition 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 参考文献 作者和相关链接 作者 论文下载 白翔主页, 刘文予 方法概括 方法简述 这篇文章是作者CVPR2012(参考文献1,专门做检测,可以看看我之前的这篇博客)的方法的扩展,本文做的是端到端的问题(检测+识别). 采用的框架是…
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要内容 参考文献 (1) 解决问题 大多数先前的工作,要么是没有考虑到网络的高阶相似度(如谱聚类,DeepWalk,LINE,Node2Vec),要么是考虑了但却使得算法效率很低,不能拓展到大规模网络(如GraRep). (2) 主要贡献 Contribution 1. 将许多现有的NRL算法架构总结…
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1) 解决问题 现有的基于GAN的方法大多都是先假设服从一个高斯分布,然后再来学习节点嵌入(匹配节点嵌入向量服从这个假设的先验分布). 这可能存在两个问题: 一个问题是(由于真实数据是有很多噪声的,所以会为GAN模型学习的分布带来很多噪声)很难从节点向量表示中区分出噪声节点,因为所有节点都是服从…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline  如上图所示,本文旨在解决一个问题:给定一张图像,我们最应该关注哪些区域?怎么将其分割出来?这是一个什么东东?这三个子问题为一体. Problem formulation: Given an image, determine the most influential item in the scene in terms of region of i…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
文章来源:https://blog.csdn.net/u013058162/article/details/80470426 3D Deep Leaky Noisy-or Network 论文阅读 原文:Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network 博文参考:Doublle Tree的博客中Evaluate the Malignancy of Pulmonary Nodu…
论文阅读——FCOS: Fully Convolutional One-Stage Object Detection 概述 目前anchor-free大热,从DenseBoxes到CornerNet.ExtremeNet,以及最近的FSAF.FoveaBox,避免了复杂的超参数设计,而且具有很好的检测效果.本文作者提出了一种全卷积的单阶段目标检测算法,类似于语义分割的做法使用像素级预测.该检测框架简单有效,而且可以方便地用于其他任务. 简介 再啰嗦一下基于anchor的检测算法的缺陷: 1.检测…
论文阅读——FoveaBox: Beyond Anchor-based Object Detector 概述 这是一篇ArXiv 2019的文章,作者提出了一种新的anchor-free的目标检测框架FoveaBox,直接学习目标存在的可能性(预测类别敏感的语义map)和bbox的坐标(为可能存在目标的每个位置生成无类别的bbox).该算法的单模型(基于ResNeXt-101-FPN )在COCO数据集上的AP达到42.1%.代码尚未开源. 介绍 anchor弊端:额外的超参数设计很复杂:设计的…
论文阅读 | Region Proposal by Guided Anchoring 相关链接 论文地址:https://arxiv.org/abs/1901.03278 概述 众所周知,anchor策略是目标检测领域的基石.很多目标检测算法的高精度检测都依赖于密集的anchor策略,也就是在空间域上以预设的尺度和宽高比做均匀采样.但是,由于anchor策略产生大量冗余的anchor box,生成数目巨大的低质量负样本,导致正负样本严重失衡,而且还有IoU阈值设置.超参数设计困难等一系列问题.文…
论文提出了一种联合细胞分割和跟踪方法,利用细胞segmentation proposals创建有向无环图,然后在该图中迭代地找到最短路径,为单个细胞提供分割,跟踪和事件. 3. PROPOSAL GENERATION 论文的方法的第一个阶段是proposal generation,目标是生成大量的segmentation proposals,使其具有较高的recall.segmentation proposals生成的主要步骤:首先,从背景中分割单元:第二,blob detection用于检测单…
关于论文的阅读笔记 论文的题目是“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”,翻译成中文为 基于注意力的视听融合技术实现鲁棒自动语音识别 (这是用谷歌翻译的.....)   摘要 文章介绍提出了一种音-视融合方案,这种方案超越了简单的特征融合,可以实现两种模式的自动对齐,进而实现了不论在嘈杂还是安静环境下识别精度的提高.文章在TCD-TIMIT和LRS2数据集上进行了测试,其中这两个数据…
Event StoryLine Corpus 论文阅读 本文是对 Caselli T, Vossen P. The event storyline corpus: A new benchmark for causal and temporal relation extraction[C]//Proceedings of the Events and Stories in the News Workshop. 2017: 77-86. 阅读的总结.有任何问题请邮件联系 arrogant262@gm…
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低层视觉问题,提出了一般性的用于解决低层视觉问题的对偶卷积神经网络.作者认为,低层视觉问题,如常见的有超分辨率重建.保边滤波.图像去雾和图像去雨等,这些问题经常涉及到估计目标信号的两个成分:结构和细节.因此,文章提出DualCNN,它包含两个平行的分支来分别恢复结构和细节信息. 具体内容参见https…
论文阅读:<Bag of Tricks for Efficient Text Classification> 2018-04-25 11:22:29 卓寿杰_SoulJoy 阅读数 954更多 分类专栏: 深度学习 自然语言处理   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u011239443/article/details/80076720 https://blog.csdn.…