[问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, 使得对于给定的 \(A,B\in M_n(\mathbb{R})\), 或者 \(\varphi(AB)=\varphi(A)\varphi(B)\) 成立, 或者 \(\varphi(AB)=\varphi(B)\varphi(A)\) 成立. 证明: 或者 \(\varphi(AB)=\var…
[问题2015S08]  设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) 表示 \(A\) 的共轭. 问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0…
[问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mathbb{Q}\) 上的 4 维列向量, 满足: \[ A\alpha_1=\alpha_2,\,\,A\alpha_2=\alpha_3,\,\,A\alpha_3=\alpha_4,\,\,A\alpha_4=-\alpha_1-\alpha_2-\alpha_3-\alpha_4.\] 证明:…
问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) 达到最大值或最小值的点的集合, 即 \(S=\{(b_1,b_2,\cdots,b_n)\in\mathbb{R}^n\,|\) \(f(x_1,x_2,\cdots,x_n)\leq\)\(f(b_1,b_2,\cdots,b_n)\), \(\forall\,(x_1,x_2,\cdots,x_…
[问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{diag}\{ J_{r_1}(1),\cdots,J_{r_k}(1),0,\cdots,0 \}.\] 特别地, 非异阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的特征值全为 \(1\). 注  本题是复旦高代教材 P293 复习题 12 的…
问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) &=& b_mx^m+b_{m-1}x^{m-1}+\cdots+b_1x+b_0, \end{eqnarray*} 其中 \(a_nb_m\neq 0\), \(n\geq 1\), \(m\geq 1\). 设 \(t\) 为实变元, \[g_t(x)=b_mx^m+(b_{m-1}+t)…
[问题2014A03]  设 \(A=(a_{ij})\) 为 \(n\,(n\geq 3)\) 阶方阵,\(A_{ij}\) 为第 \((i,j)\) 元素 \(a_{ij}\) 在 \(|A|\) 中的代数余子式,证明: \[\begin{vmatrix} A_{22} & A_{23} & \cdots & A_{2n} \\ A_{32} & A_{33} & \cdots & A_{3n} \\ \vdots & \vdots &…
[问题2015S04] 设 \(A\) 为 \(n\) 阶方阵, \(C\) 为 \(k\times n\) 矩阵, 且对任意的 \(\lambda\in\mathbb{C}\), \(\begin{pmatrix}A-\lambda I_n\\ C \end{pmatrix}\) 均为列满秩阵. 证明: 对任意的 \(\lambda\in\mathbb{C}\), \(\begin{pmatrix}C \\ C(A-\lambda I_n) \\ C(A-\lambda I_n)^2 \\ \…
[问题2015S14]  设 \(J=\begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix}\), \(A\) 为 \(2n\) 阶实矩阵, 满足 \(AJA'=J\), 证明: \(\det(A)=1\). 提示  \(\det(A)=\pm 1\) 是显然的, 设法计算 \(AJ+JA\) 的行列式, 再证明 \(\det(A)>0\) 即可. 问题解答请在以下网址下载:http://pan.baidu.com/share/hom…
[问题2014A13]  设 \(V\) 是数域 \(K\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的幂零线性变换且满足 \(\mathrm{r}(\varphi)=n-1\), 求证: \(V\) 是关于线性变换 \(\varphi\) 的循环空间, 即存在向量 \(\alpha\in V\), 使得 \[V=L(\alpha,\varphi(\alpha),\cdots,\varphi^{n-1}(\alpha),\varphi^n(\alpha),\cd…