groupBy 和SQL中groupby一样,只是后面必须结合聚合函数使用才可以. 例如: hour.filter($"version".isin(version: _*)).groupBy($"version").agg(countDistinct($"id"), count($"id")).show() groupByKey 对Key-Value形式的RDD的操作. 例如(取自link): val a = sc.paral…
[groupByKey & reduceBykey 的区别] 在都能实现相同功能的情况下优先使用 reduceBykey Combine 是为了减少网络负载 1. groupByKey 是没有 Combine 过程,可以改变 V 的类型 List[] combineByKeyWithClassTag[CompactBuffer[V]](createCombiner, mergeValue, mergeCombiners, partitioner, mapSideCombine = false)…
转载自:https://vimsky.com/article/3403.html Spark中ml和mllib的主要区别和联系如下: ml和mllib都是Spark中的机器学习库,目前常用的机器学习功能2个库都能满足需求. spark官方推荐使用ml, 因为ml功能更全面更灵活,未来会主要支持ml,mllib很有可能会被废弃(据说可能是在spark3.0中deprecated). ml主要操作的是DataFrame, 而mllib操作的是RDD,也就是说二者面向的数据集不一样.相比于mllib在…
1.groupByKey的源代码 2.groupByKey的使用缺点 不使用groupByKey的主要原因:在大规模的数据下,数据分布不均匀的情况下,可能导致OOM 3.reduceByKey的源代码 4.使用reduceByKey的youdian 使用reduceByKey函数的主要原因是:reduceByKey中存在combiner…
作为spark初学者对,一直对map与flatMap两个函数比较难以理解,这几天看了和写了不少例子,终于把它们搞清楚了 两者的区别主要在于action后得到的值 例子: import org.apache.spark.{SparkConf, SparkContext} object MapAndFlatMap { def main(args: Array[String]): Unit = { val sc = new SparkContext(new SparkConf().setAppName…
cache和persist都是用于将一个RDD进行缓存的,这样在之后使用的过程中就不需要重新计算了,可以大大节省程序运行时间. cache和persist的区别 基于Spark 1.6.1 的源码,可以看到 /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def cache(): this.type = persist() 说明是cache()调用了persist(), 想要知道二者的不同还需要看一下…
repartition 和 partitionBy 都是对数据进行重新分区,默认都是使用 HashPartitioner,区别在于partitionBy 只能用于 PairRDD,但是当它们同时都用于 PairRDD时,结果却不一样: 不难发现,其实 partitionBy 的结果才是我们所预期的,我们打开 repartition 的源码进行查看: /** * Return a new RDD that has exactly numPartitions partitions. * * Can…
Spark中产生shuffle的算子 作用 算子名 能否替换,由谁替换 去重 distinct() 不能 聚合 reduceByKey() groupByKey groupBy() groupByKey() reduceByKey aggregateByKey() combineByKey() 排序 sortByKey() sortBy() 重分区 coalesce() repartition() 集合或者表操作 Intersection() Substract() SubstractByKey…
最近在一个项目中做数据的分类存储,在spark中使用groupByKey后存入HBase,发现数据出现双份( 所有记录的 rowKey 是随机  唯一的 ) .经过不断的测试,发现是spark的运行参数配置的问题: spark.speculation=true , 将其改为false,问题就解决了.哎  , spark运行参数得修改要慎重...…
避免使用GroupByKey 我们看一下两种计算word counts 的方法,一个使用reduceByKey,另一个使用 groupByKey: val words = Array("one", "two", "two", "three", "three", "three") val wordPairsRDD = sc.parallelize(words).map(word =>…