PCA降维-最大,最小方差解释】的更多相关文章

转自http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020216.html 几个特别有用 的链接: 更加深入理解pca,在斯坦福大学的机器学习上的更加深入的分析.. http://blog.csdn.net/ybdesire/article/details/64546435 http://blog.csdn.n…
http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mxn matrix.若資料的維度太大時, 可能不利於分析, 例如這m筆資料用作機器學習. PCA的想法是算出這mxn matrix的斜方差矩陣, 此矩陣大小為nxn, 計算此矩陣n個特徵值(eigen value)及其對應的特徵向量(eigen vector), 依eigen value大小由小到大排…
2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci.edu/ml/ scikit-learn网址:http://scikit-learn.org/stable/datasets/index.html#datasets 2.1.2 安装scikit-learn工具 pip3 install Scikit-learn==0.19.1 安装好之后可以通过…
PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点的距离(即投影误差)的平方和最小.我们假设投影到的k维子空间的标准正交基(orthonormal basis)为 ,这组标准正交基组成了一个的矩阵U: 则称为子空间W 的投影矩阵(projection matrix). 如果我们不从标准正交基出发,如何求得W的投影矩阵?设是W 的任意一组基,形成一个的矩阵…
目录 主成分方差解释率计算 绘图示例 主成分方差解释率计算 通常,求得了PCA降维后的特征值,我们就可以绘图,但各个维度的方差解释率没有得到,就无法获得PC坐标的百分比. 有些工具的结果是提供了维度标准差的,如ggbiplot绘图时,直接会给你算出各个坐标的方差解释率.但我觉得这类工具绘图远不如ggplot本身,此时,就需要自己计算. 当理解了PCA的原理和含义后,就比较容易得到.网上一大堆,这里不介绍. 以ggbiplot数据为例,并将算出结果与之比较. if(!require(devtool…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
PCA(主成分分析法) 1. PCA(最大化方差定义或者最小化投影误差定义)是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了.那么PCA的核心思想是什么呢? 例如D维变量构成的数据集,PCA的目标是将数据投影到维度为K的子空间中,要求K<D且最大化投影数据的方差.这里的K值既可以指定,也可以利用主成分的信息来确定. PCA其实就是方差与协方差的运用. 降维的优化目标:将一组 N 维向量降为 K 维,其目标是选择 K 个单位正交基,使得原始数据变换到这组基上后,…
PCA降维的数学原理 PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格…
前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法步骤.主要介绍PCA算法的算法流程: 4)应用实例.针对PCA的实际应用,列出两个应用实例: 5)常见问题补充.对于数据预处理过程中常遇到的问题进行补充: 6)扩展阅读.简要介绍PCA的不足,并给出K-L变换…
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计算量,耗费时间和资源.所以我们通常会对数据重新变换一下,再跑模型.数据变换的目的不仅仅是降维,还可以消除特征之间的相关性,并发现一些潜在的特征变量. 降维算法由很多,比如PCA…
转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助. 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好…
PCA降维技术 PCA 降维 Fly Time: 2017-2-28 主成分分析(PCA) PCA Algorithm 实例 主成分分析(PCA) 主成分分析(Principal Component Analysi)是一种掌握可以提取主要特征对的方法,它可以从多元失误中解析出主要影响因素.计算朱成福的目的是将高维数据投影到低维空间.主要是用于降维,提取数据的主要特征分量. 降维,当然以为着信息的丢失,但是鉴于数据本身常常存在相关性,我们可以想办法在降维的同时将信息的随时尽量降低. PCA Alg…
MATLAB实例:PCA降维 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. iris数据 5.1,3.5,1.4,0.2,1 4.9,3.0,1.4,0.2,1 4.7,3.2,1.3,0.2,1 4.6,3.1,1.5,0.2,1 5.0,3.6,1.4,0.2,1 5.4,3.9,1.7,0.4,1 4.6,3.4,1.4,0.3,1 5.0,3.4,1.5,0.2,1 4.4,2.9,1.4,0.2,1 4.9,3.1,1.5,0.1…
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as np import os import cv2 # plt显示灰度图片 def plt_show(img): plt.imshow(img,cmap='gray') plt.show() # 读取一个文件夹下的所有图片,输入参数是文件名,返回文件地址列表 def read_directory(dire…
机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特征.比如在泰坦尼克号乘员生存预测的问题中我们会将姓名作为无用信息进行处理,这是我们可以从直观上比较好理解的.但是有些特征之间可能存在强相关关系,比如研究一个地区的发展状况,我们可能会选择该地区的GDP和人均消费水平这两个特征作为一个衡量指标.显然这两者之间是存在较强的相关关系,他们描述的都是该地区的…
K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis) 管理计算机集群(Organize Computer Clusters) 天文学数据分析(Astronomical Data Analysis) K-Means算法属于非监督式学习的一种,算法的输入是:训练数据集$\{x^{(1)},x^{(2)},\ldots, x^{(m)}\}$(其中$x^…
重点整理: PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法 1.原始数据: 假定数据是二维的 x=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1]T y=[2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]T 2.计算协方差矩阵 (1)协方差矩阵: 标准差和方差一般是用来描述一维数据的 协方差就是一种用来度量两个随机变量关系的统计量(协方差…
目录 1. PCA降维 PCA:主成分分析(Principe conponents Analysis) 2. 维度的概念 一般认为时间的一维,而空间的维度,众说纷纭.霍金认为空间是10维的. 3. 为什么要进行降维? 维度灾难:当维度超过一定值的时候,分类器效果呈现明显下降. PCA旨在找到数据中的主成分,并利用这些主成分表征原始数据,从而达到降维的目的.举一个简单的例子,在三维空间中有一系列数据点,这些点分布在一个过原点的平面上.如果我们用自然坐标系x,y,z三个轴来表示数据,就需要使用三个维…
由于论文需要,开始逐渐的学习CNN关于文本抽取的问题,由于语言功底不好,所以在学习中难免会有很多函数不会用的情况..... ̄へ ̄ 主要是我自己的原因,但是我更多的把语言当成是一个工具,需要的时候查找就行~~~~但是这也仅限于搬砖的时候,大多数时候如果要自己写代码,这个还是行不通的. 简单的说一下在PCA,第一次接触这个名词还是在学习有关CNN算法时,一篇博客提到的数据输入层中,数据简单处理的几种方法之一,有提到PCA降维,因为论文需要CNN做一些相关的工作,想做一篇综述类文章,所以思路大概是这样…
参考资料:Mastering Machine Learning With scikit-learn 降维致力于解决三类问题.第一,降维可以缓解维度灾难问题.第二,降维可以在压缩数据的同时让信息损失最 小化.第三,理解几百个维度的数据结构很困难,两三个维度的数据通过可视化更容易理解 PCA简介 主成分分析也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 构的技术.PCA通常用于高维数据集的探索与可视化.还可以用于数据压缩,数据预处理等.PCA可…
PCA降维笔记 一个非监督的机器学习算法 主要用于数据的降维 通过降维, 可以发现更便 于人类理解的特征 其他应用:可视化:去噪 PCA(Principal Component Analysis)是一种常用的数据分析方法. PCA通过线性变换,将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维. 降维思路 原数据: 二维数据据降维到一维数: 这是去掉特征1和特征2降维后的样子,从图中我们可以感觉到,右边这个比左边这个好一些,因为他们分散的间距比较大,可区…
PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. 二.优缺点 优:将高维数据映射到低维,降低数据的复杂性,识别最重要的多个特征 不足:不一定需要,且可能损失有用信息 适用数值型数据 三.步骤 1.原始数据X,对于每列属性,去平均值(也可以对数值进行标准分化) 2.计算样本点的协方差矩阵(列间两两计算相关性) 3.求出协方差矩阵的特征值和对应的特征向…
PCA降维识别手写数字 关注公众号"轻松学编程"了解更多. PCA 用于数据降维,减少运算时间,避免过拟合. PCA(n_components=150,whiten=True) n_components参数设置需要保留特征的数量,如果是小数,则表示保留特征的比例; 设为大于零的整数,会自动的选取n个主成分- whiten: 默认为False,若为True表示做白化处理,白化处理主要是为了使处理后的数据方差都一致 PCA降维识别手写数字 导包 import numpy as np imp…
PCA可以将数据从原来的向量空间映射到新的空间中.由于每次选择的都是方差最大的方向,所以往往经过前几个维度的划分后,之后的数据排列都非常紧密了, 我们可以舍弃这些维度从而实现降维 原理 内积 两个向量的乘积满足:\(ab= |a|\cdot |b|\cdot cos(\theta)\).如果\(|b|=1\)的话,\(ab=|a| \cdot cos(\theta)\). 而这个式子的含义就是a在b方向上的投影长度.pca用投影的长度的方差来衡量一个向量基的好坏. 基变换的矩阵表示 如果我想要把…
3754: Tree之最小方差树 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 402  Solved: 152[Submit][Status][Discuss] Description Wayne在玩儿一个很有趣的游戏.在游戏中,Wayne建造了N个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M对城市间能修公路,即有若干三元组 (Ui,Vi,Ci)表示Ui和Vi间有一条长度为Ci的双向道路.…
之前对PCA的原理挺熟悉,但一直没有真正使用过.最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题. MATLAB自带PCA函数:[coeff, score, latent, tsquared] = pca(X) 其中,X是n*p的,n是样本个数,p是特征维数. (1)coeff矩阵是返回的转换矩阵,就是把原始样本转换到新空间中的转换矩阵. (2)score是原始样本矩阵在新样本空间中的表示,也就是原始样本乘上转换矩阵,但是还不是直接乘,要减去一…
 算法提高 最小方差生成树   时间限制:1.0s   内存限制:256.0MB        问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是点数和边数.接下来M行,每行三个整数U,V,W,代表连接U,V的边,和权值W.保证图连通.n=m=0标志着测试文件的结束. 输出格式 对于每组数据,输出最小方差,四舍五入到0.01.输出格式按照样例. 样例输入 4 51 2 12 3 23 4 24 1 12 4 34 61 2 12 3 23 4…
[BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树 题目大意: 给定一个\(n(n\le50)\)个点,\(m(m\le1000)\)条边的带权无向图,每条边的边权为\(w_i(w_i\le50)\).求最小方差生成树. 3080数据范围:\(n\le50,m\le1000,w_i\le50\): 3754数据范围:\(n\le100,m\le1000,w_i\le100\). 其中3754询问的是最小标准差. 思路: 由于…
题目描述 给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小.输出这个最小方差. 输入 第一行两个正整数N,M 接下来M行,每行三个正整数Ui,Vi,Ci N<=100,M<=2000,Ci<=100 输出 输出最小的标准差,保留四位小数. 样例输入 3 3 1 2 1 2 3 2 3 1 3 样例输出 0.5000 题解 最小生成树 由于Ci很小,因此选出边的总和不会很大.可以考虑枚举这个总和(即平均值). 然后把每条边的边权看作 $|c_i-\bar c|$ ,跑最小生成树…
目录 1 问题描述 2 解决方案   1 问题描述 问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是点数和边数.接下来M行,每行三个整数U,V,W,代表连接U,V的边,和权值W.保证图连通.n=m=0标志着测试文件的结束. 输出格式 对于每组数据,输出最小方差,四舍五入到0.01.输出格式按照样例. 样例输入 4 51 2 12 3 23 4 24 1 12 4 34 61 2 12 3 23 4 34 1 12 4 31 3 30 0 样…