spark (五) RDD的创建 & 分区】的更多相关文章

spark 创建分区 val scores = Array(("Fred", 88), ("Fred", 95), ("Fred", 91), ("Wilma", 93), ("Wilma", 95), ("Wilma", 98)) val input = sc.parallelize(scores,3)   #这里创建了3个分区 查看分区数: input.partitions.size…
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 2:RDD的属性: a.一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都会被一个…
目录 RDD的创建 三种方式 从一个集合中创建 从文件中创建 从其他的RDD转化而来 RDD编程常用API 算子分类 Transformation 概述 帮助文档 常用Transformation表 Transformation使用实例 Action 帮助文档 常用Action表 Action使用实例 RDD的创建 三种方式 从一个集合中创建 val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8)) 从文件中创建 val rdd2 = sc.textFi…
RDD的创建  两种方式来创建RDD: 1)由一个已经存在的Scala集合创建 2)由外部存储系统的数据集创建,包括本地文件系统,还有所有Hadoop支持的数据集,比如HDFS.Cassandra.HBase.Amazon S3等. RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建.这些确定性操作称为转换,如map.filter.groupBy.join. 第1个RDD:代表了spark应用程序输入数据的来源,通过Transformation来对RDD进行各种算子的…
Spark中最核心的概念为RDD(Resilient Distributed DataSets)中文为:弹性分布式数据集,RDD为对分布式内存对象的 抽象它表示一个被分区不可变且能并行操作的数据集:RDD为可序列化的.可缓存到内存对RDD进行操作过后还可以存到内存中,下次操作直接把内存中RDD作为输入,避免了Hadoop MapReduce的大IO操作: RDD生成 Spark所要处理的任何数据都是存储在RDD之中,目前两种方式可以生成一个RDD: 1.从RDD进行转换操作 2.使用外部存储系统…
本篇博客中的操作都在 ./bin/pyspark 中执行. RDD,即弹性分布式数据集(Resilient Distributed Dataset),是Spark对数据的核心抽象.RDD是分布式元素的集合,对手的所有操作都可以概括为: 创建RDD 转化已有RDD 调用RDD操作进行求值 在这些操作中,Spark会自动将RDD中的数据分发的集群上,并将操作自动化执行. 每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上. Get Started 用户可以: 读取一个外部数据集 或者使用对…
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 和 An Architecture for Fast and General Data Processing on Large Clusters 这两篇论文. 这篇…
RDD是个抽象类,定义了诸如map().reduce()等方法,但实际上继承RDD的派生类一般只要实现两个方法: def getPartitions: Array[Partition] def compute(thePart: Partition, context: TaskContext): NextIterator[T] getPartitions()用来告知怎么将input分片: compute()用来输出每个Partition的所有行(行是我给出的一种不准确的说法,应该是被函数处理的一个…
最近因为手抖,在Spark中给自己挖了一个数据倾斜的坑.为了解决这个问题,顺便研究了下Spark分区器的原理,趁着周末加班总结一下~ 先说说数据倾斜 数据倾斜是指Spark中的RDD在计算的时候,每个RDD内部的分区包含的数据不平均.比如一共有5个分区,其中一个占有了90%的数据,这就导致本来5个分区可以5个人一起并行干活,全都压到一个人身上了.遇到这种问题,网上有很多的解决办法: 比如这篇写的就不错:http://www.cnblogs.com/jasongj/p/6508150.html 倒…
Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? 1.2 RDD的属性 1.3 WordCount粗图解RDD 二.RDD的创建方式 2.1 通过读取文件生成的 2.2 通过并行化的方式创建RDD 2.3 其他方式 三.RDD编程API 3.1 Transformation 3.2 Action 3.3 Spark WordCount代码编写 3.…