生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型 GAN包括两个核心模块. 1.生成器模块 --generator 2.判别器模块--desciminator GAN通俗原理解释 为了通俗的解释GAN原理,可以类比为伪造货币的例子(这个比方纯粹为了解释) 现在有个伪造货币的任务. 你有一堆真实的货币,一个可以不断提高鉴别能力的鉴定货币真伪的设备,还有一个可以提高伪造能力的伪造货币的设备. 1.我们继续不断的强化鉴定设备的 鉴定能力,尽…
论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈给生成器 srgan论文是建立在gan基础上的,利用gan生成式对抗网络,将图片重构为高清分辨率的图片. github上有开源的srgan项目.由于开源者,开发时考虑的问题更丰富,技巧更为高明,导致其代码都比较难以阅读和理解. 在为了充分理解这个论文.这里结合论文,开源代码,和自己的理解重新写了个s…
通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 import numpy as np import matplotlib.pyplot as plt import input_data #读取数据的一个工具文件,不影响理解 import tensorflow as tf # 获取数据 mnist = input_data.read_data_sets('data/', one_hot=True) trainimg = mnist.train.images X = mnist.t…
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodfellow 在 14 年发表了 论文 Generative Adversarial Nets 以来,生成式对抗网络 GAN 广受关注,加上学界大牛 Yann Lecun 在 Quora 答题时曾说,他最激动的深度学习进展是生成式对抗网络,使得 GAN 成为近年来在机器学习领域的新宠,可以说,研究机器…
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodfellow 在 14 年发表了 论文 Generative Adversarial Nets 以来,生成式对抗网络 GAN 广受关注,加上学界大牛 Yann Lecun 在 Quora 答题时曾说,他最激动的深度学习进展是生成式对抗网络,使得 GAN 成为近年来在机器学习领域的新宠,可以说,研究机器…
先来梳理一下我们之前所写的代码,原始的生成对抗网络,所要优化的目标函数为: 此目标函数可以分为两部分来看: ①固定生成器 G,优化判别器 D, 则上式可以写成如下形式: 可以转化为最小化形式: 我们编写的代码中,d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = D_logits, labels = tf.ones_like(D))),由于我们判别器最后一层是 sigmoid ,所以可以看出来…
GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu.com/p/25071913.相比 Wasserstein GAN ,我们的 DCGAN 好像低了一个档次,但是我们伟大的教育家鲁迅先生说过:“合抱之木,生于毫末:九层之台,起于累土:千里之行,始于足下”,(依稀记得那大概是我 7 - 8 岁的时候,鲁迅先生依偎在我身旁,带着和蔼可亲切的口吻对我说…
前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条件的 GAN,和不加约束条件的GAN,我们先来搭建一个简单的 MNIST 数据集上加约束条件的 GAN. 首先下载数据:在  /home/your_name/TensorFlow/DCGAN/ 下建立文件夹 data/mnist,从 http://yann.lecun.com/exdb/mnist/…
前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条件的 GAN,和不加约束条件的GAN,我们先来搭建一个简单的 MNIST 数据集上加约束条件的 GAN. 首先下载数据:在  /home/your_name/TensorFlow/DCGAN/ 下建立文件夹 data/mnist,从 http://yann.lecun.com/exdb/mnist/…
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保存训练过程中采样器的采样图片,在 train.py 中输入如下代码: # -*- coding: utf-8 -*- import tensorflow as tf import os from read_data import * from utils import * from ops impo…
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 utils.py,输入如下代码: import scipy.misc import numpy as np # 保存图片函数 def save_images(images, size, path): """ Save the samples images The best size number is int(max(sqrt(image.shape[0]),sqrt(image.shape[…
代码实现 当初学习时,主要学习的这个博客 https://xyang35.github.io/2017/08/22/GAN-1/ ,写的挺好的. 本文目的,用GAN实现最简单的例子,帮助认识GAN算法. import numpy as np from matplotlib import pyplot as plt batch_size = 4 2. 真实数据集,我们要通过GAN学习这个数据集,然后生成和他分布规则一样的数据集 X = np.random.normal(size=(1000, 2)…
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的神经网络只能解决关于辨识的问题,并不能够为机器带来自主创造的能力,例如让机器写出一篇流畅的新闻报道,生成一副美丽的风景画.但随着GAN的出现,这些都成为了可能. 什么是GAN? 生成式对抗网络(GAN, Generative Adversarial Networks)是一种近年来大热的深度学习模型,…
生成式对抗网络(Generative Adversarial Network,简称GAN),主要由两部分构成:生成模型G和判别模型D.训练GAN就是两种模型的对抗过程. 生成模型:利用任意噪音(random noise)来产生一个样本. 判别模型:判断一个样本是真实的(real),还是生成模型产生的(fake). 对抗过程 两种模型都不断提升自己.生成模型总是尽可能产生一个接近真实的样本.判别模型总是尽可能分辨出生成模型产生的样本.直到判别模型无法判断一个样本是真实的,还是生成模型产生的. 极小…
https://www.tinymind.cn/competitions/ai 生成式对抗网络(GAN)是近年来大热的深度学习模型. 目前GAN最常使用的场景就是图像生成,作为一种优秀的生成式模型,GAN引爆了许多图像生成的有趣应用.在图像生成模型的质量上,生成对抗网络技术可以说实现了飞跃,很多衍生模型已经在一定程度上解决了特定场景中的图像生成问题.此外,诸如文本到图像的生成.图像到图像的生成等应用研究也让工业界与学术界都非常“兴奋”,为人工智能行业带来了非常多的可能性. 为了带大家领略GAN的…
生成式对抗网络GAN的研究进展与展望.pdf 摘要: 生成式对抗网络GAN (Generative adversarial networks) 目前已经成为人工智能学界一个热门的研究方向. GAN的基本思想源自博弈论的二人零和博弈, 由一个生成器和一个判别器构成, 通过对抗学习的方式来训练. 目的是估测数据样本的潜在分布并生成新的数据样本. 在图像和视觉计算.语音和语言处理.信息安全.棋类比赛等领域, GAN 正在被广泛研究,具有巨大的应用前景. 本文概括了GAN 的研究进展, 并进行展望. 在…
生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般包含两个部分:生成器(Generator)和判别器(Discriminator).训练的过程是无监督学习. 先总结一下训练的过程.一般而言,输入是一个一维向量z,它从先验生成.假设现在Generator生成的是图像.我们知道,无监督学习目的是学习数据集中的特征(或者说分布),假设真实的分布为,而Generat…
[前言]      本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者按照GAN主干论文.GAN应用性论文.GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干论文之间的联系与区别,揭示生成式对抗网络的研究脉络. 本文涉及的论文有: Goodfellow Ian, Pouget-Abadie J, Mirza M, et al. Generative adver…
[重磅]无监督学习生成式对抗网络突破,OpenAI 5大项目落地 [新智元导读]"生成对抗网络是切片面包发明以来最令人激动的事情!"LeCun前不久在Quroa答问时毫不加掩饰对生成对抗网络的喜爱,他认为这是深度学习近期最值得期待.也最有可能取得突破的领域.生成对抗学习是无监督学习的一种,该理论由 Ian Goodfellow 提出,此人现在 OpenAI 工作.作为业内公认进行前沿基础理论研究的机构,OpenAI 不久前在博客中总结了他们的5大项目成果,结合丰富实例介绍了生成对抗网络…
生成式对抗网络(gennerative adversarial network,GAN),谷歌2014年提出网络模型.灵感自二人博弈的零和博弈,目前最火的非监督深度学习.GAN之父,Ian J.Goodfellow,公认人工智能顶级专家. 原理.生成式对搞网络包含一个生成模型(generative model,G)和一个判别模型(discriminative model,D).Ian J.Goodfellow.Jean Pouget-Abadie.Mehdi Mirza.Bing Xu.Davi…
生成式对抗网络(gennerative adversarial network,GAN),目前最火的非监督深度学习.一个生成网络无中生有,一个判别网络推动进化.学技术,不先着急看书看文章.先把Demo跑起来,顺利进入断点调试.这样就可以边学习边修改边验证,亲自下手参与调试,会比只是当个看客,更有兴趣更有成就感也更容易理解内容. 1、下载并安装Anaconda.https://www.continuum.io/downloads Anaconda的使用可以看这篇文章:http://www.jian…
生成对抗网络(GAN),是深度学习模型之一,2014年lan Goodfellow的开篇之作Generative Adversarial Network, GAN概述 GAN包括两个模型,一个是生成模型(generative model),一个是判别模型(discriminative model).生成模型要做的事情就是生成看起来真的和原始数据相似的实例,判断模型就是判断给定的实例是生成的还是真实的(真实实例来源于数据集,伪造实例来源于生成模型). 生成器试图欺骗判别器,判别器则努力不被生成器欺…
在Auto-encoder中,input data通过一个encoder神经网络得到一个维度的较低的向量,称这个向量为code,code经过一个decoder神经网络后输出一个output data. encoder 网络的作用是用来发现给定数据的压缩表示.decoder网络使原始输入的尽可能地相同的重建的表示.在训练时,decoder 强迫 auto-encoder选择最有信息量的特征,最终保存在code中.重建的输入越靠近原始输入,最终得到的表示越好. 通过得到的encoder和decode…
这是CVPR2019上UCLA和google brain的一个工作.模型非常简单,利用辅助损失解决GAN不稳定问题:用旋转分类将辅助分类器对label的需求去掉,使图片可以直接对自己标注类别. Self-Supervised GANs via Auxiliary Rotation Loss 论文地址:https://arxiv.org/abs/1811.11212 GITHUB代码:https://github.com/vandit15/Self-Supervised-Gans-Pytorch…
参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversarial Network GAN基础和优点 这些惊艳的工作基本都是2016年8月甚至10月以后的,也就是 GAN 被提出两年后.这是因为,虽然 GAN 有非常吸引人的性质,想要训练好它并不容易.经过两年的摸索.思考与尝试,才有了如今的积累和突破. 那么这个非常吸引人的 GAN 是什么样呢.其实 GAN 最初让人“…
导入 matplotlib 模块: import matplotlib 查看自己版本所支持的backends: print(matplotlib.rcsetup.all_backends) 返回信息: ['GTK3Agg', 'GTK3Cairo', 'MacOSX', 'nbAgg', 'Qt4Agg', 'Qt4Cairo', 'Qt5Agg', 'Qt5Cairo', 'TkAgg', 'TkCairo', 'WebAgg', 'WX', 'WXAgg', 'WXCairo', 'agg'…
https://blog.csdn.net/love666666shen/article/details/75522489 https://blog.csdn.net/yangdelong/article/details/80483622 https://blog.csdn.net/c2a2o2/article/details/76861695 https://zhuanlan.zhihu.com/p/95619140…
本文针对cifar10 图集进行了DCGAN的复现. 其中库中的SpectralNormalizationKeras需添加至python环境中 该篇代码如下: from keras import backend as K from keras.engine import * from keras.legacy import interfaces from keras import activations from keras import initializers from keras impo…
用MXNet实现mnist的生成对抗网络(GAN) 生成式对抗网络(Generative Adversarial Network,简称GAN)由一个生成网络与一个判别网络组成.生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本.判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来.而生成网络则要尽可能地欺骗判别网络.两个网络相互对抗.不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]本文衔接上一个随笔:人工智能中小样本问题相关的系列模型演变及学习笔记(一):元学习.小样本学习 三.生成对抗网络 GAN 综述 说到小样本学习,就想说比较时髦的生成对抗网络GAN.别误会,生成对抗网络并不是只针对小样本生成,还有很多别的丰富应用. 1. GAN GANs是一种结构化的概率模型,由两个对立的模型组成:生成模型(G)用于捕获数据分布,判别模型(D)用…