相关概念: 有向图.无向图:有向图的边是双行道,无向图的边是单行道.在处理无向图时,可以把一条无向边看做方向相反的两条有向边. 圈 cycle / 回路 circuit:在相同顶点上开始并结束且长度大于0的通路. 环 loop:起点与终点重合的边. 负圈:含有负权边的圈.   问题类型? 是否兼容负圈? 时间复杂度? Bellman-Ford 单源 √ O(V·E) Dijkstra 单源 × O(E·logV) Floyd-Warshall 任意点对 √ O(V3) 1. Bellman-Fo…
Luogu单源最短路径模版题 dijkstra #include<cstdio> #include<vector> using namespace std; const int oo=0xfffff; struct data { int to,val; }; vector<data> edge[10001]; bool visit[10001]; int cost[10001],n,m,s; void add(int a,int b,int val) { data tm…
COGS图论相关算法 最小生成树 Kruskal+ufs int ufs(int x) { return f[x] == x ? x : f[x] = ufs(f[x]); } int Kruskal() { int w = 0; for(int i=0; i<n; i++) f[i] = i; sort(e, e+n); for(int i=0; i<n; i++) { int x = ufs(e[i].u), y = ufs(e[i].v); if(x != y) { f[x] = y;…
1.道格拉斯-普克算法(Douglas–Peucker) 道格拉斯-普克算法(Douglas–Peucker algorithm,亦称为拉默-道格拉斯-普克算法.迭代适应点算法.分裂与合并算法)是将曲线近似表示为一系列点,并减少点的数量的一种算法.该算法的原始类型分别由乌尔斯·拉默(Urs Ramer)于1972年以及大卫·道格拉斯(David Douglas)和托马斯·普克(Thomas Peucker)于1973年提出,并在之后的数十年中由其他学者予以完善. 算法的基本思路是:对每一条曲线的…
这几天详细了解了下二叉树的相关算法,原因是看了唐boy的一篇博客(你会翻转二叉树吗?),还有一篇关于百度的校园招聘面试经历,深刻体会到二叉树的重要性.于是乎,从网上收集并整理了一些关于二叉树的资料,及相关算法的实现(主要是Objective-C的,但是算法思想是相通的),以便以后复习时查阅. 什么是二叉树? 在计算机科学中,二叉树是每个节点最多有两个子树的树结构.通常子树被称作“左子树”和“右子树”,左子树和右子树同时也是二叉树.二叉树的子树有左右之分,并且次序不能任意颠倒.二叉树是递归定义的,…
这两天完成了栈的顺序存储结构的相关算法,包括初始化.压栈.出栈.取栈顶元素.判断栈是否为空.返回栈长度.栈的遍历.清栈.销毁栈.这次的实现过程有两点收获,总结如下: 一.清楚遍历栈的概念 栈的遍历指的是从栈底想栈顶方向运行visit()函数,这是之前的学习中所忽略的:栈的遍历解除了栈的输出顺序只能从栈顶像栈底方向的限制. 二.清空栈时要不要将stacksize重置 网上看到有的人在实现清空栈这一功能时,将stacksize重置为0,我觉得有点问题,起初的想法是将其重置为初始化时的值,在与同学讨论…
图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; bool ins[100010]; int col[100010];//记录每个点所属强连通分量(即染色) vector<int> map[100010]; stack<int> st; int tot;//时间戳 int colnum;//记录强连通分量个数 void tarjan(…
内存回收的流程 java的垃圾回收分为三个区域新生代.老年代. 永久代 一个对象实例化时 先去看伊甸园有没有足够的空间:如果有 不进行垃圾回收 ,对象直接在伊甸园存储:如果伊甸园内存已满,会进行一次minor gc:然后再进行判断伊甸园中的内存是否足够:如果不足 则去看存活区的内存是否足够:如果内存足够,把伊甸园部分活跃对象保存在存活区,然后把对象保存在伊甸园:如果内存不足,向老年代发送请求,查询老年代的内存是否足够:如果老年代内存足够,将部分存活区的活跃对象存入老年代.然后把伊甸园的活跃对象放…
转自:https://blog.csdn.net/xiajun07061225/article/details/8553808 堆简介   堆并不是STL的组件,但是经常充当着底层实现结构.比如优先级队列(Priority Queue)等等. 堆是一种完全二叉树,因此我们可以用数组来存储所有节点.在这里的实现中,采用了一个技巧:将数组中索引为0的元素保留,设置为极大值或者为极小值(依据大顶堆或者小顶堆而定).那么当某个节点的索引是i时,其左子节点索引为2*i,右子节点索引为2*i+1.父节点是i…
弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有顶点至所有顶点的的最短路径计算,代码及其简洁 JS实现: //定义邻接矩阵 let Arr2 = [ [0, 1, 5, 65535, 65535, 65535, 65535, 65535, 65535], [1, 0, 3, 7, 5, 65535, 65535, 65535, 65535], […