最小的 $x$ 满足 $L\le x\bmod P\le R$】的更多相关文章

在myeclipse总部署项目,一直有问题,提示如下的错误,经过研究在网上需求帮助,解决方案如下: Deployment failure on Tomcat  6.x. Could not copy all resources to D: \Program Files\apache-tomcat-6.0.16\webapps\fuNan_conv. If a file is loc ked, you can wait until the lock times out to redeploy, o…
洛谷上有个点死活卡不过去,不知道是哪里写丑了orz 参考:https://www.cnblogs.com/ditoly/p/BZOJ4200.html 从上往下dp,设f为不向左右走直接上去的值,g为先向左右走一步再上去,至于找每个方向上的点,分别按x,y,x+y,x-y排序然后二分即可 然后建出左上右上的图,跑有上下界最小流即可 // luogu-judger-enable-o2 #include<iostream> #include<cstdio> #include<cs…
对于原有边,流区间是(1,inf),按着原边连,然后再连(s,i,(0,inf)),(i,t,(0,inf))表示任意位置进出雪场 按着这个建出新图 然后最小流的方法是先跑可行流,设ans为(t,s,(0,inf))的流量,然后取消这条边,跑从原来的t-s的最大流为ans2,答案就是ans-ans2 #include<iostream> #include<cstdio> #include<cstring> #include<queue> using name…
数组开小导致TTTTTLE-- 是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0 这个最小割比较像最大权闭合子图,建图是s像所有点连流量为格子价值的边(相当于最大权闭合子图中的正权点),然后考虑边缘,两个相邻的格子,如果一个选一个不选那么中间这条边就有负的贡献,所以两个相邻的格子之间连两条边权为mid*边权的边,注意是两条,要互相连一下,然后所有边界上的点像t连边权为mid*边界边权的边,相当于假装外面还有一层点全标为t,然后跑最小割判断…
算法详见:http://www.cnblogs.com/lokiii/p/8191573.html 求出点两两之间的最小割之后,把他们扔到map/set里跑即可 可怕的是map和set跑的时间竟然完全一样-代码里注释掉的部分是map #include<iostream> #include<cstdio> #include<cstring> #include<queue> #include<map> #include<set> usin…
这个算法详见http://www.cnblogs.com/lokiii/p/8191573.html 求出两两之间最小割之后暴力统计即可 #include<iostream> #include<cstdio> #include<cstring> #include<queue> using namespace std; const int N=205,inf=1e9; int T,n,m,Q,a[N],ans[N][N],h[N],cnt,s,t,q[N],l…
fanhq666地址:http://fanhq666.blog.163.com/blog/static/8194342620113495335724/ wiki地址(证明):https://en.wikipedia.org/wiki/Gomory–Hu_tree 用途:用\( \sum_{i=0}^{\left \lceil log_n-1 \right \rceil}2^i=2^{\left \lceil log_n \right \rceil}-1 \)次最大流的时间求出n个点两两之间的最小…
看错题了以为多组询问吓得不行-- 其实还挺好想的,就是数据范围一点都不网络流.把U作为s,V作为t,以最小生成树为例,(U,V,L)要在最小生成树上,就要求所有边权比L小的边不能连通(U,V)所在的联通块.这样一来模型就很显然了,就是对所有边权<L的边建边(u,v,1)(v,u,1),然后最小割即可.建双向边是因为反正只会割掉一条-- #include<iostream> #include<cstdio> #include<cstring> #include<…
平面上一开始有三个点\((0,0),(0,1),(1,0)\)形成成L形(点连续),每次操作可以将一个点改变位置,使得得到的仍然是L形.给出终止L形的位置,问移动的最小步数. \(|x|,|y|\le 10^9,T\le 10^3\) 有若干种阴间的分类讨论做法但是阳间的做法却不好想. CF论坛中的一位大佬分享了个clean solution: 考虑\(L\)形重心的位置,考虑每次移动重心是怎样移动的,可以发现:重心能往8联通方向除了跨过顶点的方向外移动一格. 于是先把L形的坐标转化成重心的坐标…
2018年论文题 约定:令点集$V=[1,n]$.边集$E=[1,m]$,记$m$条边依次为$e_{i}=(x_{i},y_{i},c_{i})$(其中$1\le i\le m$),将其按照$c_{i}$从小到大排序,即不妨假设有$c_{1}\le c_{2}\le...\le c_{m}$ 先来考虑$T=1$的情况,即如何求最小方差生成树 题意即求$\min_{E_{T}\subseteq E,E_{T}为生成树}\frac{\sum_{x\in E_{T}}(\mu-c_{x})^{2}}{…