Eigen提供了解线性方程的计算方法,包括LU分解法,QR分解法,SVD(奇异值分解).特征值分解等.对于一般形式如下的线性系统: 解决上述方程的方式一般是将矩阵A进行分解,当然最基本的方法是高斯消元法. 先来看Eigen 官方的第一个例程: #include <iostream> #include <Eigen/Dense> using namespace std; using namespace Eigen; int main() { Matrix3f A; Vector3f…
介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其中协同过滤技术又可根据是否采用了机器学习思想建模的不同划分为基于内存的协同过滤(Memory-based CF)与基于模型的协同过滤技术(Model-based CF).其中基于模型的协同过滤技术中尤为矩阵分解(Matrix Factorization)技术最为普遍和流行,因为它的可扩展性极好并且易…
在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib中,推荐算法这块只实现了基于矩阵分解的协同过滤推荐算法.而基于的算法是FunkSVD算法,即将m个用户和n个物品对应的评分矩阵M分解为两个低维的矩阵:$$M_{m \times n}=P_{m \times k}^TQ_{k \times n}$$ 其中k为分解成低维的维数,一般远比m和n小.如果大…
PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)> Introduction to programming with OpenCV OpenCV编程简单介绍 Gady Agam Department of Computer Science January 27, 2006 Illinois Institute o…
一.潜在因子(Latent Factor)推荐算法 本算法整理自知乎上的回答@nick lee.应用领域:"网易云音乐歌单个性化推荐"."豆瓣电台音乐推荐"等.        这种算法是在NetFlix(没错,就是用大数据捧火<纸牌屋>的那家公司)的推荐算法竞赛中获奖的算法,最早被应用于电影推荐中,在实际应用中比现在排名第一的 @邰原朗所介绍的算法误差(RMSE)会小不少,效率更高.下面仅利用基础的矩阵知识来介绍下这种算法.        该算法的思想是…
目录 问题 算法 LINEARTIMESVD 算法 CONSTANTTIMESVD 算法 理论 算法1的理论 算法2 的理论 代码 Drineas P, Kannan R, Mahoney M W, et al. Fast Monte Carlo Algorithms for Matrices II: Computing a Low-Rank Approximation to a Matrix[J]. SIAM Journal on Computing, 2006, 36(1): 158-183…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 产品推荐 - 矩阵分解问题示例 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.8 动态 API 最新版本 控制台应用程序 .txt 文件 推荐 矩阵分解 MatrixFact…
矩阵分解是将矩阵拆解成多个矩阵的乘积,常见的分解方法有 三角分解法.QR分解法.奇异值分解法.三角分解法是将原方阵分解成一个上三角矩阵和一个下三角矩阵,这种分解方法叫做LU分解法.进一步,如果待分解的矩阵A是正定的,则A可以唯一的分解为 \[{\bf{A = L}}{{\bf{L}}^{\bf{T}}}\] 其中L是下三角矩阵.下面以三维矩阵进行简单说明: \[\begin{array}{ccccc}{\bf{A = L}}{{\bf{L}}^{\bf{T}}}{\rm{ = }} & \lef…
项亮老师在其所著的<推荐系统实战>中写道: 第2章 利用用户行为数据 2.2.2 用户活跃度和物品流行度的关系 [仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法.学术界对协同过滤算法进行了深入研究,提出了很多方法,比如 基于领域的方法(neighborhood-based). 隐语义模型(latent factor model). 基于图的随机游走算法(random walk on graph)等.   在这些方法中,最著名的.在业界得到最广泛的算法是基于领域的方法.而基于领域的方法主…
[论文标题]List-wise learning to rank with matrix factorization for collaborative filtering   (RecSys '10 recsys.ACM ) [论文作者] Yue ShiDelft University of Technology, Delft, Netherlands Martha LarsonDelft University of Technology, Delft, Netherlands Alan Ha…
相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x'Ax>0,则称矩阵A 是正定的.正定矩阵的行列式必然大于 0, 所有特征值也必然 > 0.相对应的,半正定矩阵的行列式必然 ≥ 0.   QR分解 矩阵的正交分解又称为QR分解,是将矩阵分解为一个正交矩阵Q和一个上三角矩阵的乘积的形式. 任意实数方阵A,都能被分解为A=QR.这里的Q为正交单位阵…
Eigen 是一个基于C++的线性代数库,其中实现大量常用的线性代数算法,包括常规矩阵计算,矩阵变换,矩阵分解,矩阵块操作.Eigen 广泛地应用在开源项目中,例如OpenCV,PCL(Point Cloud Library),ROS等.其实Eigen中算法都可以在matlab中找到,但是由于matlab是半开源的.所以,如果想在自己的项目中使用,还是要义无反顾地选择Eigen.Eigen目前的版本是3.3.4(2018.4.21). 来看Eigen官网的第一个例子: #include <ios…
Eigen常规矩阵定义 1.使用 Eigen的使用在官网上有详细的介绍,这里对我学习过程中用到的基本操作进行介绍.首先是矩阵的定义.在矩阵类的模板参数共有6个.一般情况下我们只需要关注前三个参数即可.前三个模板参数如下所示: Matrix<typename Scalar,int RowsAtCompileTime,int ColsAtCompileTime> Scalar参数为矩阵元素的类型,该参数可以是int,float,double等. RowsAtCompileTime和ColsAtCo…
一.Eigen简介 Eigen是一个高层次的C ++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法. Eigen适用范围广,支持包括固定大小.任意大小的所有矩阵操作,甚至是稀疏矩阵:支持所有标准的数值类型,并且可以扩展为自定义的数值类型:支持多种矩阵分解及其几何特征的求解:它不支持的模块生态系统 [2]  提供了许多专门的功能,如非线性优化,矩阵功能,多项式解算器,快速傅立叶变换等. 二.配置 1.下载是个zip包,然后解压到自己的目录(还是不建议解压在C盘).地址:http://…
目录 1矩阵分解概述 1.1用在什么地方 1.2推荐的原理 2矩阵分解的原理 2.1目标函数 2.2 损失函数 2.3 通过梯度下降的方法求得结果 3 代码实现 参考地址: 贪心学院:https://github.com/GreedyAIAcademy/Machine-Learning 1矩阵分解概述 1.1用在什么地方 推荐系统:最著名的就那个烂大街的啤酒和尿布的故事,还有现在头条的投喂用户使用的也是推荐系统.就不多说了. 1.2推荐的原理 设,矩阵R代表3个用户对4部影片的评分,矩阵U和P是…
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可视化出来,但是它们是做为区分不同电影的特征 怎么来区分电影i与电影j是否相似呢?就是判断X(i)与X(j)之间的距离是否小来判断.这样在一个用户看了或者买了一部电影后,我们可以给他推荐相似的电影. 总结: 1>用向量化的计算来对所有的用户所有的电影进行评分计算 2>通过学习特征参数,如何找到相关的…
前言 推荐系统实践那本书基本上就更新到上一篇了,之后的内容会把各个算法拿来当专题进行讲解.在这一篇,我们将会介绍矩阵分解这一方法.一般来说,协同过滤算法(基于用户.基于物品)会有一个比较严重的问题,那就是头部效应.热门的物品容易跟大量的物品产生相似性,而尾部的物品由于特征向量系数很少产生与其他物品的相似性,也就很少被推荐. 矩阵分解算法 为了解决这个问题,矩阵分解算法在协同过滤算法中共现矩阵的基础上加入了隐向量的概念,也是为了增强模型处理稀疏矩阵的能力.物品和用户的隐向量是通过分解协同过滤的共现…
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge which I have learned before is forgot...(呜呜) 1.Terminology 单位矩阵:identity matrix 特征值:eigenvalues 特征向量:eigenvectors 矩阵的秩:rank 对角矩阵:diagonal matrix 对角化矩阵…
芯航线FPGA学习套件之4*4矩阵键盘模块测试手册   本手册以简明扼要的方式介绍芯航线FPGA学习套件提供的矩阵键盘模块的测试方法:   连接开发板,如下所示: 2.将矩阵键盘模块与开发板按如下图所示连接: 具体连接线序,可参看下图: 打开测试工程NEW_Key_Board,如下图所示: 烧写NEW_Key_Board.sof文件到开发板中 按下任意按键,核对当前按键值与LED灯状态是否一致,下图所示: 上图,按下按键A,LED[0:3]对应状态为亮灭亮灭,因为0使能LED亮,1关闭LED灯,…
#include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <cassert> #include <vector> #include <ctime> class MclVector { public: int n; double *Mat; /** type=0: 列向量(默认) type=1: 行向量 **/ in…
1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为:…
矩阵分解 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积. 1.三角分解法: 要求原矩阵为方阵,将之分解成一个上三角形矩阵(或是排列(permuted) 的上三角形矩阵)和一个下三角形矩阵,简称LU分解法. 注意:这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同的一对上下三角形矩阵. MATLAB: [L,U]=lu(A),A为方阵,L为下三角矩阵,U为上三角矩阵. 2.QR分解法: A为任意矩阵,将A矩阵分解成一个正规正交矩阵与上三…
矩阵分解(rank decomposition)文章代码汇总 矩阵分解(rank decomposition) 本文收集了现有矩阵分解的几乎所有算法和应用,原文链接:https://sites.google.com/site/igorcarron2/matrixfactorizations Matrix Decompositions has a long history and generally centers around a set of known factorizations such…
一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一件产品,有没有其它相关的产品,你可以推荐给他. 我们将要做的是:实现一种选择的方法,写出协同过滤算法的预测情况. 我们有关于五部电影的数据集,我将要做的是,将这些用户的电影评分,进行分组并存到一个矩阵中. 我们有五部电影,以及四位用户,那么 这个矩阵…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 电影推荐 - 矩阵分解示例 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 控制台应用程序 .csv 文件 推荐 矩阵分解 MatrixFactor…
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular Value Decomposition (SVD)是线性代数中十分重要的矩阵分解方法,被称为"线性代数的基本理论",因为它不仅可以运用于所有矩阵(不像特征值分解只能用于方阵),而且奇异值总是存在的. SVD定理 设一个矩阵\(A^{m×n}\)的秩为\(r∈[0,min(m,n)]\),矩阵…
1.引言 矩阵分解(Matrix Factorization, MF)是传统推荐系统最为经典的算法,思想来源于数学中的奇异值分解(SVD), 但是与SVD 还是有些不同,形式就可以看出SVD将原始的评分矩阵分解为3个矩阵,而推荐本文要介绍的MF是直接将一个矩阵分解为两个矩阵,一个包含Users 的因子向量,另一个包含着Items 的因子向量. 2.原理简介 假如电影分为三类:动画片,武打片,纪录片,而某一部电影对应这三类的隶属度分别为 0, 0.2, 0.7,可以看出这是一部纪录片里面有些武打成…
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering     (24th-IJCAI ) (Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) ) [论文作者]Liping Jing, PengWa…
[论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer Society) [论文作者]Yehuda Koren(Yahoo Research) , Robert Bell and Chris Volinsky( AT&T Labs—Research) [论文链接]Paper(8-pages // Double column) [Info] 此篇论文的作者是n…
在Eigen中,所有的矩阵Matrix和向量Vector都是由Matrix类构造的.向量只不过是矩阵的特殊形式,只有一列(列向量)或者一行. Matrix模板类有6个参数,其中前三个参数是必须的.前三个参数如下: Matrix<typename Scalar,int RowsAtCompileTime,int ColsAtCompileTime > Scalar 是 标量类型,取值可以是 float ,int double 等. RowsAtCompileTime 和 ColsAtCompil…