1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 27715  Solved: 7134[Submit][Status][Discuss] Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M…
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 19528  Solved: 4818[Submit][Status][Discuss] Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M…
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MB Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路  1:(x,y)<==>(x+1,y)  2:(x,y)<…
题意概述:给出一张无向图,每条边有一个权值,割掉这条边代价为它的权值,求使起点不能到达终点的最小代价. 显然能看出这是个最小割嘛,然后最小割=最大流,建图的时候特殊处理一下再跑个最大流就好了. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<queue> using namespace std; const int maxn=1e…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)…
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路  1:(x,y)<==>(x+1,y)  2:(x,y)<==>(x,y+1)  3:(x,y)<==>(x+1,y+1)  道路上的权值表示这条路上最多能够通过的兔子…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然后在对偶图上跑最短路即可. 一个平面图的最小割等价于其对偶图从S到T的最短路.并不是所有的图都有对偶图,平面图也有一定的要求,自己可以百度一下. 代码(用BZOJ的数据测过了,但是在BZOJ上过不去.爆WA,并不知道是为什么,里面有个特判,并不知道有没有用处.) #include <iostream…
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1001 题目大意: 见链接 思路: 求最小割,平面图的最小割等价于对偶图的最短路 直接建图求最短路即可,只是图比较难建. #include<bits/stdc++.h> #define IOS ios::sync_with_stdio(false);//不可再使用scanf printf #define Max(a, b) ((a) > (b) ? (a) : (b))//禁用…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: #include<cstdio> #include<cstring> #include<algorithm> #include<queue> using namespace std; typedef long long ll; ,xm=8e6+; int n,…
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 Description现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,…
题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路  1:(x,y)<==>(x+1,y)  2:(x,y)<==>(x,y+1)  3:(x,y)<==>(x+1,y+1)  道路上的权值表示这条路上最多能够通过的兔子数,道路是无向…
题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路  1:(x,y)<==>(x+1,y)  2:(x,y)<==>(x,y+1)  3:(x,y)<==>(x+1,y+1)  道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的…
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路…
题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(,),右下角点为(N,M)(上图中N=,M=).有以下三种类型的道路 :(x,y)<==>(x+,y) :(x,y)<==>(x,y+) :(x,y)<==>(x+,y+) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两…
推荐文章:<浅析最大最小定理在信息学竞赛中的应用>--周冬 题目 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(,),右下角点为(N,M)(上图中N=,M=).有以下三种类型的道路 :(x,y)<==>(x+,y) :(x,y)<==>(x,y+) :(x,y)<==>(x+,y+) 道路上的权值表示这…
原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq 1000$ 题解 网格图先转个对偶图,然后SPFA跑一发就完事了. 或者你可以这样理解. 你要从红色区域到蓝色区域连一条路径,比如橙色或者绿色. (其中绿色就是答案) 然后话费就是经过的边权值和. 然后你会发现消耗一条边的权值所达到的效果是沟通那条边所分割的两个区域.于是发现,以空白区域为节点,原图…
平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最短路,求出来的就是s到t的最小割. 要特判n==0||m==0的情况 然后我特判的那个点就T了一万次,在抄elijahqi巨佬的代码的时候才发现: 我是这样写的: ... #define MIN(x,y) (x<y?x:y) ... ....ans=MIN(ans,read()) .... 这能不T就有…
其实这个题直接Dinic跑最小割可过. (小优化是: 无向图建网络流,一条边不用建成4条,可以正反容量都是边权即可.完全等价 ) [无效]网络流之转换对偶图 一个巧妙的事情是,如果建边合适的话,最小割就是右上部分到左下部分的最短路. 看图就明白了. 注意一个正方形要再分成两个三角形. 从1~14号点的每个路径,都对应着网络流的一个割集. 所以对偶图最短路等价于最小割…
题面: 传送门 思路: 其实就是一道最小割的题目...... 我的写法加了两个优化,常数比较小,所以过掉了 一个是当前弧,一个是若当前点并不能流出去,那么标记dep为-1 听说正解是对偶图最短路?可以找时间学一学...... Code: #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #define inf 1e9 #define id(i,j) (i-1)*…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 #include<cstdio> #include<cstring> #include<algorithm> #include<queue> #define ll long long using namespace std; ,M=6e6+; int n,m,hd[N],xnt,to[M],nxt[M],w[M]; ll dis[N];bool…
题目链接 为什么这题网络流这么快,海拔那题就那么慢.. //119968kb 544ms //路不是有向的,所以要建四条边..既然如此就直接将反向边的流量设为w了.(or MLE...) #include <cstdio> #include <cctype> #include <algorithm> //#define gc() getchar() #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,st…
浅析最大最小定理在信息学竞赛中的应用---周东 ↑方法介绍 对于一个联通的平面图G(满足欧拉公式) 在s和t间新连一条边e; 然后建立一个原图的对偶图G*,G*中每一个点对应原图中每一个面,每一条边对应分割面的每一条边; 那么对偶图G*中,以原图s和t间边e新划分出的面作为起点(s*),最外的面作为终点(t*); 那么从s*到t*的每一条路都是原图G的一个割; 下图来自上方标出百度文库网址的ppt; 然后用堆(优先队列)优化的迪杰斯特拉,复杂度 O((m+n)logn) n为点数,m为边数...…
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路  1:(x,y)<==>(x+1,y)  2:(x,y)<==>(x,y+1)  3:(x,…
YEAH 题目链接 终于做对这道题啦    建图的艰辛难以言表- - 顺便说一句我队列转STL啦 狼抓兔子的地图符合平面图定义,于是将该图转成对偶图并求出对偶图的最短路即可. 这篇博客给了我极大的帮助,现将链接放上 xiaoyimi 粘上自己的代码 #include<cstdio> #include<cstdlib> #include<cctype> #include<cstring> #include<cmath> #include<al…
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 29035  Solved: 7604 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路  1:(x,y)&l…
题目描述 现在小朋友们最喜欢"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:  左上角点为(1,1),右下角点为(N,M)(上图中N=3,M=4).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的.左上角…
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是…
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1001 [算法] 最小割 [代码] #include<bits/stdc++.h> using namespace std; #define MAXN 1010 const long long inf = 1e18; struct edge { int to; long long w; int nxt; } e[MAXN * MAXN * ]; int i,j,n,m,tot,S,…
题意就是求最小割- 然后我们有这么一个定理(最大流-最小割定理 ): 任何一个网络图的最小割中边的容量之和等于图的最大流. (下面直接简称为最大流和最小割) 证明: 如果最大流>最小割,那把这些割边删去之后依然能找到一条增广路使得源点和汇点联通,和这些边是最小割矛盾.故最大流$\leq$最小割. 而如果最大流<最小割,可是这样通过这些割边还能有更大的流,和最大流矛盾. 综上,最大流=最小割~ 然后看看这道题-哇$n\leq 1000$,百万个点百万条边-好吧Dinic其实跑得过-而且还蛮快的-…
题意: 给一个如图形式的\(n*m\)的方格,从左上走到右下,给出边权,问分成两块所需的最小代价.\(n,m\leq1000\). 思路: 显然是个最小割,但是\(O(n^2m)\)的复杂度很高,虽然这道题能过. 这里介绍一种最大流改最短路的方法--对偶图. 对任意一个图我们可以变成对偶图: 如下图,每一个闭合的平面我们都给他标号,然后连接源点和汇点,把外面那个无穷大的平面分成两个平面\(s,t\).然后开始新建边.新建边的每一条边为:把一条原来边的左右两个平面连接到一起,权值为原来的边的权值.…