gaussian噪声】的更多相关文章

起源:Boltzmann神经网络 Boltzmann神经网络的结构是由Hopfield递归神经网络改良过来的,Hopfield中引入了统计物理学的能量函数的概念. 即,cost函数由统计物理学的能量函数给出,随着网络的训练,能量函数会逐渐变小. 可视为一动力系统,其能量函数的极小值对应系统的稳定平衡点. Hinton发明的Boltzmann中乘热打铁,对神经元输出引入了随机概率重构的概念.其想法来自于模拟退火算法: 首先在高温下进行搜索,由于此时各状态出现概率相差不大,系统可以很快进入“热平衡状…
数学定义 http://en.wikipedia.org/wiki/Complex_normal_distribution 通信中的定义 在通信里,复基带等效系统的噪声是复高斯噪声,其分布就是circularly symmetric complex Gaussian.你可以理解为我们通常意义的噪声,因为不是circularly symmetric的高斯噪声我们在通信里从来不用考虑. 下面是产生m行n列的 CN(0, sigma^2)噪声(randn(m,n)+1i*randn(m,n))*sig…
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用.该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下: 由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感.于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声…
科班出身,贝叶斯护体,正本清源,故拿”九阳神功“自比,而非邪气十足的”九阴真经“: 现在看来,此前的八层功力都为这第九层作基础: 本系列第九篇,助/祝你早日hold住神功第九重,加入血统纯正的人工智能队伍. 9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process 8. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders 7. [Bayesian] “我是bayesian我怕谁”系列 - Bo…
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 高斯过程(gaussian process) 可用于回归和分类器 高斯过程主要应用于各领域的建模和预报,在时间序列分析中,高斯过程被用于时间序列的多…
本次涉及了对原图像增加高斯噪声.多次叠加原图和高斯噪声图以及叠加后的平均图像. close all; %关闭当前所有图形窗口,清空工作空间变量,清除工作空间所有变量 clear all; clc; RGB=imread('eight.tif'); %读入eight图像,赋值给RGB A=imnoise(RGB,'gaussian',0,0.05); %加入高斯白噪声 I=A; %将A赋值给I M=3; %设置叠叠加次数M I=im2double(I); %将I数据类型转换成双精度 RGB=im2…
本文科普一下高斯白噪声(white Gaussian noise,WGN). 百度百科上解释为“高斯白噪声,幅度分布服从高斯分布,功率谱密度服从均匀分布”,听起来有些晦涩难懂,下面结合例子通俗而详细地介绍一下. 白噪声,如同白光一样,是所有颜色的光叠加而成,不同颜色的光本质区别是的它们的频率各不相同(如红色光波长长而频率低,相应的,紫色光波长短而频率高).白噪声在功率谱上(若以频率为横轴,信号幅度的平方为功率)趋近为常值,即噪声频率丰富,在整个频谱上都有成分,即从低频到高频,低频指的是信号不变或…
Matlab函数--awgn awgn 将白色高斯噪声添加到信号中 语法  y = awgn(x,snr)  y = awgn(x,snr,sigpower)  y = awgn(x,snr,'measured')  y = awgn(x,snr,sigpower,state)  y = awgn(x,snr,'measured',state)  y = awgn(...,powertype)  描述 y = awgn(x,snr)将白高斯噪声添加到向量信号x中.标量snr指定了每一个采样点信号…
目录 故事背景 网络结构 BN和残差学习 拓展到其他任务 发表在2017 TIP. 摘要 Discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating t…
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; void add_salt_and_pepper_noise(Mat &image); void add_gaussian_noise(Mat &image); int main(int argc, char** argv) { Mat src = imread("f:/ima…