开源实现 https://github.com/shihenw/convolutional-pose-machines-release(caffe版本) https://github.com/psycharo/cpm (tensorflow版本,但是只有用pre-trained model做predict,没有training) 论文原文下载地址:https://www.researchgate.net/publication/301880946_Convolutional_Pose_Machi…
0 - 背景 人体姿态识别存在遮挡以及关键点不清晰等主要挑战,然而,人体的关键点之间由于人体结构而具有相互关系,利用容易识别的关键点来指导难以识别关键点的检测,是提高关键点检测的一个思路.本文通过提出序列化结构模型,来提高人体姿态识别任务的效果. 1 - 贡献 使用一个序列卷积结构模型学习表达空间信息 采用系统的方法来设计和训练模型,以学习图像特征和依赖图像空间模型进行结构化预测的任务 在MPII/LSP/FLIC等数据集上实现了最好的性能 分析了联合训练一个多阶段.中间重复监督的架构的效果 2…
Convolutional Pose Machines 2018-12-10 18:17:20 Paper:https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wei_Convolutional_Pose_Machines_CVPR_2016_paper.pdf Caffe Version: https://github.com/CMU-Perceptual-Computing-Lab/convolutional-p…
周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recognition from depth maps.这篇文章是关于Sparsing Coding的.Sparse coding并不是我的研究方向.在此仅仅是做个文献阅读后的笔记,权当开拓下我的视野. 从标题就能够看出,这篇论文试图通过学习到group sparsity和geometry constrain…
题目翻译:学习 local feature descriptors 使用 triplets 还有浅的卷积神经网络.读罢此文,只觉收获满满,同时另外印象最深的也是一个浅(文章中会提及)字. 1 Contribution 这篇论文主要做的贡献有: 提出了一种复杂度更小的triplets,更浅,计算度复杂小,表现也很好. 并且借助一种 in-triplet mining的训练方法,降低了挖掘hard negatives的复杂度提高了表现. 论文还介绍了两种不同的loss function在不同的任务下…
从DeepNet到HRNet,这有一份深度学习"人体姿势估计"全指南 几十年来,人体姿态估计(Human Pose estimation)在计算机视觉界备受关注.它是理解图像和视频中人物行为的关键一步. 在近年深度学习兴起后,人体姿态估计领域也发生了翻天覆地的变化. 今天,文摘菌就从深度学习+二维人体姿态估计的开山之作DeepPose开始讲起,为大家盘点近几年这一领域的最重要的论文. 什么是人体姿势估计? 人体姿态估计(Human Pose Estimation,以下简称为HPE)被定…
Introduction (1)Motivation: 当前的行人重识别方法都只能在标准的数据集上取得好的效果,但当行人被遮挡或者肢体移动时,往往效果不佳. (2)Contribution: ① 提出了一个基于区域的适应性质量估计网络(adaptive region-based quality estimation network,RQEN),包含了区域性特征提取模块和基于区域的质量预测模块.其旨在减小低质量图像区域的影响,利用序列中的区域互补. ② 提供了一个大规模的较整洁的数据集:Label…
  你有没有过这种体验,拍照时对着镜头,脑子一片空白.表情僵硬.手和脚无处安放,最后拍出来的照片很是奇怪.拍照软件中的固定姿势抓拍功能可以帮助你:选择一个你想要的姿势模板,当你摆出同款姿势时,软件会进行自动抓拍,完美避开拍照时的尴尬.本文详细介绍了华为HMS ML kit人体骨骼识别技术的集成过程,该技术精准定位了14个骨骼点,可以轻松实现固定姿势抓拍.  人体骨骼检测功能开发实战   做了一个视频流骨骼识别小demo,做一次实战演练,Github demo源码:https://github.c…
姿势和手势通常会混淆,但是他们是两个不同的概念.当一个人摆一个姿势时,他会保持身体的位置和样子一段时间.但是手势包含有动作,例如用户通过手势在触摸屏上,放大图片等操作. 通常,游戏者很容易模仿指定姿势并且比较容易编写算法来识别指定的姿势.例如,如果开发一个用户在天上飞的游戏. 一种控制游戏的方式是,游戏者像鸟一样挥动手臂.挥动的频率越快游戏角色飞的越快,这是一个手势.还有一种方法是,展开双臂,双臂张得越快开,飞的越快.双臂离身体越近,飞的越慢. 身体以及各个关节点的位置定义了一个姿势.更具体的来…
这几天开始接触人体行为识别,经过多方对比后,选择了现在最热的人体骨架提取开源库,openpose. 下面就不多说了,直接开始openpose在win10下的配置: 需求如下:1. VS2019      据说VS2015以上的版本就可以,VS201x主要是为了通过cMake生成的.sln文件生成可执行exe文件.dll文件,和一些程                                                  序运行所必需的文件,下载VS2019 community版本就可以…
The single-cell transcriptional landscape of mammalian organogenesis 老板已经提了无数遍的文章,确实很nb,这个工作是之前我们无法想象得,想想如何把我们的数据和他们的数据整合到一起. 文献阅读 | Molecular Architecture of the Mouse Nervous System 这篇侧重强调的是神经系统的单细胞发育过程测序. Mouse Organogenesis Cell Atlas (MOCA) - 所有…
<Macro-Micro Adversarial Network for Human Parsing> 摘要:在人体语义分割中,像素级别的分类损失在其低级局部不一致性和高级语义不一致性方面存在缺陷.对抗性网络的引入使用单个鉴别器来解决这两个问题.然而,两种类型的解析不一致是由不同的机制产生的,因此单个鉴别器很难解决它们.为解决这两种不一致问题,本文提出了宏观 - 微观对抗网络(MMAN).它有两个鉴别器,一个鉴别器Macro D作用于低分辨率标签图并且惩罚语义不一致性,例如错位的身体部位.另一…
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习任务都要求能处理包含丰富的元素间关联关系的图数据,例如物理系统建模.疾病分类以及文本和图像等非结构数据的学习等.图形神经网络(GNNs)是一种连接模型,通过图形节点之间的消息传递捕获图形的依赖性. 图(Graph)是一种对一组对象(node)及其关系(edge)进行建模的数据结构.由于图结构的强大表示能力,近…
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science literature The overwhelming majority of scientific knowledge is published as text, which is difficult to analyse by either traditional statistical anal…
<<UML大战需求分析>>阅读笔记(2)> 此次读了uml大战需求分析的第三四章,我发现这本书讲的特别的好,由于这学期正在学习设计模式这本书,这本书就讲究对uml图的利用,突然发现uml特别有用处,而且作用特别的大,它可以在写代码之前,可以对代码有一个很好的框架分析. 对于第三章的内容来说,作者通过分析业务的模式,来了解uml图,面向对象比面向过程更高级,无需注重结构化编程和编程基本功.面向对象编程就是把代码放进一个个类中而已.将业务概念直接转变为类,赋予合适的属性和操作,就…
从本篇開始.将深入CI框架的内部.一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说.全局函数具有最高的载入优先权.因此大多数的框架中BootStrap引导文件都会最先引入全局函数,以便于之后的处理工作). 打开Common.php中,第一行代码就很诡异: if ( ! defined('BASEPATH')) exit('No direct script access allowed'); 上一篇(CI框架源代码阅读笔记2 一切的入口 index…
<Thinking In Java>阅读笔记 前四章:对象导论. 一切都是对象. 操作符. 控制执行流程 public在一个文件中只能有一个,可以是一个类class或者一个接口interface >一旦创建一个引用,就希望它能与一个新的对象相关联: String s = "hello"; String s = new String("hello"); s:遥控器(引用) “hello”:电视机(对象) 数据存储在: 寄存器:最快的存储区,在处理器内…
自己保存的源码阅读笔记哈 faster rcnn 的主要识别过程(粗略) (开始填坑了): 一张3通道,1600*1600图像输入中,经过特征提取网络,得到100*100*512的feature map (设定stride = 16,这是坐标计算要用的),基于这个,生成100 * 100 * scale * aspdio 的anchor box,然后, 这个feature map 通过使用两个卷积网络分别回归目标非目标和bbox_dealta,两个,分别是rpn_objectness_predi…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
阅读笔记<JavaScript语言精粹> 对象 1.检索属性 使用[]和. 2.引用传递 JavaScript的简单数据类型包括数字.字符串.布尔值.null值和undefined值.其它所有的值都是对象.数组是对象,函数是对象,正则表达式是对象.对象通过引用传递,它们永远不会被复制. 3.原型 当我们对某个对象做出改变时,不会触及该对象的原型,只有在检索值的时候才会被用到.原型连接在更新时是不起作用的.delete删除对象中的属性,它也不会触及原型链中的任何对象,删除对象的属性可能会让来自原…
David M.BLEI nCR文献学习笔记(基本完成了)  http://yhbys.blog.sohu.com/238343705.html 题目:The Nested Chinese Restaurant Process and Bayesian Nonparametric Inference of Topic Hierarchies David M.BLEI 这个LDA领域的大牛,对LDA有诸多变形,这一片是将随机过程(stochastic process)用于无参贝叶斯推断上,构造主题…
这段时间阅读了英文版的NVidia官方的<The Cg Tutorial>,借此来学习基本的图形学知识和着色器编程. 在此做一个阅读笔记. 本文为大便一箩筐的原创内容,转载请注明出处,谢谢:http://www.cnblogs.com/dbylk/p/4793480.html 动画 Animation 一.基于时间的运动 Movement in Time 实现动画渲染,需要应用程序对时间进行监测,并将它作为一个全局变量传递给着色器. 尽量在GPU上使用顶点着色器执行动画计算是一种高效的动画实现…
这是Deepmind 公司在2016年1月28日Nature 杂志发表论文 <Mastering the game of Go with deep neural networks and tree search>.介绍了 AlphaGo 程序的细节. 本博文是对这篇论文的阅读笔记. AlphaGo 神经网络构成 AlphaGo 总体上由两个神经网络构成.以下我把它们简单称为「两个大脑」,这并非原文中的提法,仅仅是我的一个比喻. 第一个大脑(Policy Network)的作用是在当前局面下推断…
关于论文的阅读笔记 论文的题目是“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”,翻译成中文为 基于注意力的视听融合技术实现鲁棒自动语音识别 (这是用谷歌翻译的.....)   摘要 文章介绍提出了一种音-视融合方案,这种方案超越了简单的特征融合,可以实现两种模式的自动对齐,进而实现了不论在嘈杂还是安静环境下识别精度的提高.文章在TCD-TIMIT和LRS2数据集上进行了测试,其中这两个数据…
之前看过TCN,稍微了解了一下语言模型,这篇论文也是对语言模型建模,但是由于对语言模型了解不深,一些常用数据处理方法,训练损失的计算包括残差都没有系统的看过,只是参考网上代码对论文做了粗浅的复现.开学以来通过看的几篇论文及复现基本掌握了tensorflow的基本使用,了解了“数据处理-模型构建-训练“的处理问题基本流程,但是随着看论文的增多发现理论基础严重薄弱,以后应该会一边补理论一边看论文... 一.论文简介 来源:没...没找到 题目:Language Modeling with Gated…
TextRCNN 文本分类 阅读笔记 论文:recurrent convolutional neural networks for text classification 代码(tensorflow):https://github.com/roomylee/rcnn-text-classification/blob/master/rcnn.py 待续...…
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失缺乏对label信息的考虑(???). (2)Contribution: 提出一个新的端到端网络框架,称为 CNN and RNN Fusion(CRF),结合了Siamese.Softmax 联合损失函数.分别对全身和身体局部进行模型训练,获得更有区分度的特征表示. Method (1)框架: (…
Introduction (1)Motivation: 大量标记数据成本过高,采用半监督的方式只标注一部分的行人,且采用单样本学习,每个行人只标注一个数据. (2)Method: 对没有标记的数据生成一个伪标签(pseudo labels),将标记的数据和部分伪标签的数据作为扩充数据集进行训练. 但这种方法引入了很多不可信的训练样本,制约了训练模型的性能. (3)Contribution: ① 为了在单样本学习中更好的利用未标签数据,提出了步进学习方法EUG(Exploit the Unknow…
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 3.2 音频 3.3 图像 3.4 多模态 4. Detailed overview 4.1 文本 4.1.1 LIWC/MRC 4.1.2 Receptiviti API 4.1.3 社交网络文本研究 4.1.4 深度神经网络应用 4.1.5 SenticNet 5 4.1.6 weighted…
一时手贱把原先系统的EFI分区给删了,按照网上的教程还没有恢复成功,无奈之下只能重装系统,想想这么多环境和配置真是酸爽. 身为一个伪科研工作者,首先想到的是自己的文献和阅读笔记.我所使用的文献管理工具是Mendeley,可以很方便得进行文献标注和迁移.只需要简单两步,就可以找回自己熟悉的文献阅读环境. 一,备份原先的论文,并在新系统环境中保存到与原系统环境中相同的路径. 比如在原先的系统环境中,我的论文一直保存在 "D:\论文" 文件夹中,那么在新的系统环境中就在D盘下也创建一个以 &…