The single-cell transcriptional landscape of mammalian organogenesis 老板已经提了无数遍的文章,确实很nb,这个工作是之前我们无法想象得,想想如何把我们的数据和他们的数据整合到一起. 文献阅读 | Molecular Architecture of the Mouse Nervous System 这篇侧重强调的是神经系统的单细胞发育过程测序. Mouse Organogenesis Cell Atlas (MOCA) - 所有…
<Macro-Micro Adversarial Network for Human Parsing> 摘要:在人体语义分割中,像素级别的分类损失在其低级局部不一致性和高级语义不一致性方面存在缺陷.对抗性网络的引入使用单个鉴别器来解决这两个问题.然而,两种类型的解析不一致是由不同的机制产生的,因此单个鉴别器很难解决它们.为解决这两种不一致问题,本文提出了宏观 - 微观对抗网络(MMAN).它有两个鉴别器,一个鉴别器Macro D作用于低分辨率标签图并且惩罚语义不一致性,例如错位的身体部位.另一…
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习任务都要求能处理包含丰富的元素间关联关系的图数据,例如物理系统建模.疾病分类以及文本和图像等非结构数据的学习等.图形神经网络(GNNs)是一种连接模型,通过图形节点之间的消息传递捕获图形的依赖性. 图(Graph)是一种对一组对象(node)及其关系(edge)进行建模的数据结构.由于图结构的强大表示能力,近…
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science literature The overwhelming majority of scientific knowledge is published as text, which is difficult to analyse by either traditional statistical anal…
David M.BLEI nCR文献学习笔记(基本完成了) http://yhbys.blog.sohu.com/238343705.html 题目:The Nested Chinese Restaurant Process and Bayesian Nonparametric Inference of Topic Hierarchies David M.BLEI 这个LDA领域的大牛,对LDA有诸多变形,这一片是将随机过程(stochastic process)用于无参贝叶斯推断上,构造主题…
这段时间阅读了英文版的NVidia官方的<The Cg Tutorial>,借此来学习基本的图形学知识和着色器编程. 在此做一个阅读笔记. 本文为大便一箩筐的原创内容,转载请注明出处,谢谢:http://www.cnblogs.com/dbylk/p/4793480.html 动画 Animation 一.基于时间的运动 Movement in Time 实现动画渲染,需要应用程序对时间进行监测,并将它作为一个全局变量传递给着色器. 尽量在GPU上使用顶点着色器执行动画计算是一种高效的动画实现…
这是Deepmind 公司在2016年1月28日Nature 杂志发表论文 <Mastering the game of Go with deep neural networks and tree search>.介绍了 AlphaGo 程序的细节. 本博文是对这篇论文的阅读笔记. AlphaGo 神经网络构成 AlphaGo 总体上由两个神经网络构成.以下我把它们简单称为「两个大脑」,这并非原文中的提法,仅仅是我的一个比喻. 第一个大脑(Policy Network)的作用是在当前局面下推断…