深度图像配准(Registration)原理】的更多相关文章

机器视觉中,3D相机产生的深度图像(depth image)通常需要配准(registration),以生成配准深度图像(registed depth image).实际上配准的目的就是想让深度图和彩色图重合在一起,即是将深度图像的图像坐标系转换到彩色图像的图像坐标系下.下面我们来介绍其推导的过程. 1. 原理 为了描述方便,首先做些简单的假设.如下图所示,3D相机的左侧相机(left camera)为红外相机(即深度相机,ir camera),右侧相机(right camera)为彩色相机(c…
(Source:https://blog.sicara.com/image-registration-sift-deep-learning-3c794d794b7a)  图像配准方法概述 图像配准广泛用于遥感,医学图像,计算机视觉等.通常,它的应用根据图像获取方式主要分为四组: 不同视角(多视角分析)——从不同视角获取同一场景图像.其目的是为了获得更大的2D视图或者扫描场景的3D表示.应用示例:遥感-被检区域图像的拼接.计算机视觉-形状恢复(立体形状). 不同时间(多时分析)——从不同时间获取同…
  图像配准(Image Registration)是计算机视觉中的基本步骤.在本文中,我们首先介绍基于OpenCV的方法,然后介绍深度学习的方法. 什么是图像配准 图像配准就是找到一幅图像像素到另一幅图像像素间的空间映射关系.这些图像可以是不同时间(多时间配准),不同传感器在不同地方拍摄(多模式配准).这些图像之间的空间关系可以是刚性(rigid)^1(平移和旋转),仿射(affine)^2(例如剪切),单应性^3(homographies)或复杂的大变形模型(complex large de…
目前深度图像的获取方法有激光雷达深度成像法,计算机立体视觉成像,坐标测量机法,莫尔条纹法,结构光法等等,针对深度图像的研究重点主要集中在以下几个方面,深度图像的分割技术 ,深度图像的边缘检测技术 ,基于不同视点的多幅深度图像的配准技术,基于深度数据的三维重建技术,基于三维深度图像的三维目标识别技术,深度图像的多分辨率建模和几何压缩技术等等,在PCL 中深度图像与点云最主要的区别在于  其近邻的检索方式的不同,并且可以互相转换. (这一章是我认为非常重要的) 模块RangeImage相关概念以及算…
RGB-D(深度图像)   深度图像 = 普通的RGB三通道彩色图像 + Depth Map   在3D计算机图形中,Depth Map(深度图)是包含与视点的场景对象的表面的距离有关的信息的图像或图像通道.其中,Depth Map 类似于灰度图像,只是它的每个像素值是传感器距离物体的实际距离.通常RGB图像和Depth图像是配准的,因而像素点之间具有一对一的对应关系.   下面可以看到两个不同的深度图,以及从中衍生的原始模型.第一个深度图显示与照相机的距离成比例的亮度.较近的表面较暗; 其他表…
深度学习Anchor Boxes原理与实战技术 目标检测算法通常对输入图像中的大量区域进行采样,判断这些区域是否包含感兴趣的目标,并调整这些区域的边缘,以便更准确地预测目标的地面真实边界框.不同的模型可能使用不同的区域采样方法.在这里,我们介绍一种这样的方法:它生成多个大小和纵横比不同的边框,同时以每个像素为中心.这些边界框称为锚框.我们将在下面几节中练习基于锚盒的对象检测. 首先,导入本文所需的包或模块.在这里,我们修改了NumPy的打印精度.因为打印张量实际上调用了NumPy的print函数…
Atitti 图像处理 图像混合 图像叠加 blend 原理与实现 混合模式 编辑 本词条缺少信息栏,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 混合模式是图像处理技术中的一个技术名词,不仅用于广泛使用的Photoshop中,也应用于AfterEffect.llustrator . Dreamweaver. Fireworks等软件.主要功效是可以用不同的方法将对象颜色与底层对象的颜色混合.当您将一种混合模式应用于某一对象时,在此对象的图层或组下方的任何对象上都可看到混合模式的效果.…
Atitit.计算机图形图像图片处理原理与概论attilax总结 计算机图形1 图像处理.分析与机器视觉(第3版)1 数字图像处理(第六版)2 图像处理基础(第2版)2 发展沿革 1963年,伊凡·苏泽兰(Ivan Sutherland)在麻省理工学院发表了名为<画板>的博士论文, 它标志着计算机图形学的正式诞生.至今已有五十多年的历史.此前的计算机主要是符号处理系统,自从有了计算机图形学,计算机可以部分地表现人的右脑功能了,所以计算机图形学的建立具有重要的意义.计算机图形学在如下几方面有了长…
2011-05-25 17:21 非刚性图像配准 matlab简单示例 demons算法, % Clean clc; clear all; close all; % Compile the mex files %compile_c_files % Read two images I1=im2double(imread('ssftrinew1.png'));  I2=im2double(imread('ssftri.png')); % Set static and moving image S=I…
近日在做基于sift特征点的图像配准时遇到匹配失败的情况,失败的原因在于两幅图像分辨率相差有点大,而且这两幅图是不同时间段的同一场景的图片,所以基于sift点的匹配已经找不到匹配点了.然后老师叫我尝试手动选择控制点来支持仿射变换. 很可惜opencv里没有这类似的库,查了下资料,看看有没有现成的手动配准软件,找到了arcgis这款软件可以做手动配准,不过这软件也都太大了吧我要的只是一个简单的功能而已!然后想了想,还是自己写个手动配准工具吧. 首先简单通俗说一下什么是图像配准.先观察一下下面两张图…
(1)点云到深度图与可视化的实现 区分点云与深度图本质的区别 1.深度图像也叫距离影像,是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像.获取方法有:激光雷达深度成像法.计算机立体视觉成像.坐标测量机法.莫尔条纹法.结构光法. 2.点云:当一束激光照射到物体表面时,所反射的激光会携带方位.距离等信息.若将激光束按照某种轨迹进行扫描,便会边扫描边记录到反射的激光点信息,由 于扫描极为精细,则能够得到大量的激光点,因而就可形成激光点云.点云格式有*.las ;*.pcd; *.txt等…
http://www.cnblogs.com/Lemon-Li/p/3504717.html 图像配准算法一般可分为: 一.基于图像灰度统计特性配准算法:二.基于图像特征配准算法:三.基于图像理解的配准算法. 其中,算法类型二最普遍,基于特征的图像配准算法的核心步骤为:1.特征提取.2.特征匹配.3.模型参数估计.4.图像变换和灰度插值(重采样). 图像配准必须得考虑3个问题: 分别是配准时所用到的空间变换模型.配准的相似性测度准则以及空间变换矩阵的寻优方式. 1)空间变换模型,是指的这两幅要配…
当初选方向时就由于从小几何就不好.缺乏空间想像能力才没有选择摄影測量方向而是选择了GIS. 昨天同学找我帮他做图像匹配.这我哪里懂啊,无奈我是一个别人有求于我,总是不好意思开口拒绝的人.于是乎就看着他给的一章节内容開始敲代码了,今天总算给他完毕了. 做的比較简单,中间也遇到了不少问题,尤其是计算量大的问题,由于老师给的数据是粗配准过的数据, RANSAC算法评估时就简化了下. 理论内容: 第5章 图像配准建立几何变换模型 特征点建立匹配关系之后,下一步就是求解图像之间的变换关系.仿射变换可以非常…
简单介绍: 基于互信息的图像配准算法以其较高的配准精度和广泛的适用性而成为图像配准领域研究的热点之中的一个.而基于互信息的医学图像配准方法被觉得是最好的配准方法之中的一个.基于此.本文将介绍简单的基于互信息的图像配准算法. 预备知识 熵 熵(entropy)是信息论中的重要概念,用来描写叙述系统不确定性的測度,反映一个系统本身所能提供的信息总量.除去枯燥的概念.信息熵的数学表达式为: 当然,对于一幅图像来说,其熵的计算表达式例如以下:        hi表示图像Y中灰度值为i的像素点总数,N表示…
图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Surf特征进行匹配,找到最匹配的特征点对 3. 提取最优配对点的坐标,生成透视变换矩阵 4. 对测试图像经过透视变换,生成配准图像 以下是Opencv代码实现: #include "highgui/highgui.hpp" #include "opencv2/nonfree/nonf…
一.说明 医疗图像配准是ITK的一个重要内容,而我们今天想要说的一个程序则相当于是其中的HelloWorld程序. 程序源码位置: InsightToolkit-\Examples\RegistrationITKv4\\ImageRegistration1.cxx 二.ITK的配准框架 三.程序的主要思路 程序的主要思路可以用如下的框图来表示: 其中我们需要输入输出的文件如下: 但是在这里,为了便于程序阅读,这个时候我把所有的参数全部都写在了程序里面. 四.工程构建 1-构建工程 按照之前的方法…
深度探索MySQL主从复制原理 一 .概要 MySQL Replication (MySQL 主从复制) 是什么? 为什么要主从复制以及它的实现原理是什么? 1.1 MySQL 主从复制概念 MySQL 主从复制是指数据可以从一个MySQL数据库服务器主节点复制到一个或多个从节点.MySQL 默认采用异步复制方式,这样从节点不用一直访问主服务器来更新自己的数据,数据的更新可以在远程连接上进行,从节点可以复制主数据库中的所有数据库或者特定的数据库,或者特定的表. 1.2 MySQL 主从复制主要用…
Matlab下imwrite,Uint16的深度图像 1. 在Matlab命令窗口输入命令: help imwrite 会有如下解释: If the input array is of class uint16 and the format supports 16-bit data (JPEG, PNG, and TIFF), imwrite outputs the data as 16-bit values. If the format does not support 16-bit valu…
Kinect v1 (Microsoft Kinect for Windows v1 )彩色和深度图像对的采集步骤 一.在ubuntu下尝试 1. 在虚拟机VWware Workstation 12.0安装ubuntu14.04按照<Ubuntu安装Kinect v1驱动(openni.NITE.Sensor)及遇到的问题>安装了Kinect v1的驱动,但是最终运行示例出现的窗口和网址提供的不一样,右侧彩色图都是重叠起来的,并且一直在跳动.原因可能是由于kinect v1在虚拟机上驱动有问题…
本文介绍了利用机器学习实现胸部CT扫描图像自动判读的任务,这对我来说是一个有趣的课题,因为它是我博士论文研究的重点.这篇文章的主要参考资料是我最近的预印本 “Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale Chest Computed Tomography Volumes.” CT扫描图像是一种大体积图像,大小约为512×512×1000灰度体素,用于描绘心脏.肺和胸部的其他解剖结构.胸部CT扫描图像…
Image Registration is a fundamental step in Computer Vision. In this article, we present OpenCV feature-based methods before diving into Deep Learning. What is Image Registration? Image registration is the process of transforming different images of…
1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和…
1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法,只是用了不同的方法解决了同一个问题,这样我们就形成了一个统一的观察视角,不再将深度神经网络看成是一个独立的算法. 第四章:讨论通用逼近理论,这是为了将视角提高到一个更高的框架体系,通用逼近理论证明了所有的目标函数都可以拟合,换句话说就是,所有的问题都可以通过深度学习解决.但是通用逼近理论并没有告诉…
最近一段时间学习并做的都是对图像进行处理,其实自己也是新手,各种尝试,所以我这个门外汉想总结一下自己学习的东西,图像处理的流程.但是动起笔来想总结,一下却不知道自己要写什么,那就把自己做过的相似图片搜索的流程整理一下,想到什么说什么吧. 首先在进行图片灰度化处理之前,我觉得有必要了解一下为什么要进行灰度化处理. 图像灰度化的目的是什么? 将彩色图像转化为灰度图像的过程是图像的灰度化处理.彩色图像中的每个像素的颜色由R,G,B三个分量决定,而每个分量中可取值0-255,这样一个像素点可以有1600…
代码示例: #include <Kinect.h> #include <iostream> #include <opencv2\highgui.hpp> using namespace std; using namespace cv; int main(void) { IKinectSensor * mySensor = nullptr; GetDefaultKinectSensor(&mySensor); //获取感应器 mySensor->Open()…
动态代理类原理(示例代码参见java反射机制剖析(三)) a)  理解上面的动态代理示例流程 a)  理解上面的动态代理示例流程 b)  代理接口实现类源代码剖析 咱们一起来剖析一下代理实现类($Proxy0)的源代码和整个动态代理的流程. $Proxy0生成的代码如下: import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; import java.lang.reflect.Proxy; impo…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…
http://blog.csdn.net/songrotek/article/details/51065143 http://blog.csdn.net/dinosoft/article/details/50893291 https://www.zhihu.com/question/39905662 https://yq.aliyun.com/articles/53737 https://wenku.baidu.com/view/3cbb606f49649b6648d747fb.html 深度解…
(一)图像特征匹配--SIFT 1.1 SIFT背景简介 SIFT算法是David Lowe在1999年提出的局部特征描述子,并在2004年深入发展和完善. SIFT算法是在尺度空间进行特征检测并确定关键点的位置和关键点所在的尺度. 该关键点方向特征选取该点邻域梯度的主方向,以便实现算子对尺度和方向的无关性. 1.2 SIFT特征向量生成步骤 一幅图像SIFT特征向量的生成步骤主要有如下四步: (1)检测尺度空间极值点,初步确定关键点的位置和所在尺度: [初步找出关键点群] (2)精确确定关键点…
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高:但是在测试数据上损失函数比较大,预测准确率较低. 过拟合是很多机器学习的通病.如果模型过拟合,那么得到的模型几乎不能用.为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合.此时,训练模型费时就成为一个很大的问题,不仅…