MapReduce——计算温度最大值 (基于全新2.2.0API) deprecated: Job类的所有Constructors, 新的API用静态方法getInstance(conf)来去的Job的实例: Code: import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org…
Demo.java package com.java; import java.io.BufferedWriter; import java.io.File; import java.io.FileWriter; import java.text.SimpleDateFormat; import java.util.Calendar; import java.util.Random; /** * 随机生成从2000到2018每天一个随机四位数,用于MapReduce计算每年最大值测试 * * @…
1. 测试文件生成程序,参考 https://www.cnblogs.com/jonban/p/10555364.html MapReduce程序示例如下: 2. 新建Maven项目  hadoop 3. pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocati…
write & read a  MapFile import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.MapFile; import org.apache.hadoop.io.MapFile.Write…
write & read a sequence file write & read a sequence file import java.io.IOException; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.io.SequenceFile.Writer; import org.apache.hadoop.io.SequenceFile.Reader; import org.apache.had…
Configurataion Printer import java.util.Map.Entry; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.util.ToolRunner; import org.apache.hadoop.util.Tool; import org.apache.hadoop.conf.Config…
Hadoop-MapReduce计算气象温度 1 运行环境说明 1.1 硬软件环境 主机操作系统:Mac OS 64 bit ,8G内存 虚拟软件:Parallers Desktop12 虚拟机操作系统:CentOS 64位,单核,512内存 JDK:java version "1.7.0_45" Hadoop:1.1.2 1.2 机器网络环境 集群包含三个节点:1个namenode.2个datanode,其中节点之间可以相互ping通.节点IP地址和主机名分布如下: 序号 IP地址…
最近做了一个小的mapreduce程序,主要目的是计算环比值最高的前5名,本来打算使用spark计算,可是本人目前spark还只是简单看了下,因此就先改用mapreduce计算了,今天和大家分享下这个例子,也算是对自己写的程序的总结了. 首先解释下环比,例如我们要算本周的环比,那么计算方式就是本周的数据和上周数字的差值除以上周数值就是环比了,如果是月的环比就是本月和上月数据的差值除以上月数字就是本月环比了.不过本mapreduce实例不会直接算出比值,只是简单求出不同时间段数值的差值,最终环比结…
MapReduce 计算模型的优化涉及了方方面面的内容,但是主要集中在两个方面:一是计算性能方面的优化:二是I/O操作方面的优化.这其中,又包含六个方面的内容. 1.任务调度 任务调度是Hadoop中非常重要的一环,这个优化又涉及两个方面的内容.计算方面,Hadoop总会优先将任务分配给空闲的机器,使所有的任务能公平地分享系统资源.I/O方面.Hadoop会尽量将Map任务分配给InputSplit所在的机器,以减少网络I/O的消耗. 2.数据预处理与InputSplit的大小 MapReduc…
摘要: 通过前面的学习,大家已经了解了HDFS文件系统.有了数据,下一步就要分析计算这些数据,产生价值.接下来我们介绍Mapreduce计算框架,学习数据是怎样被利用的. 博主福利 给大家赠送一套hadoop视频课程 授课老师是百度 hadoop 核心架构师 内容包括hadoop入门.hadoop生态架构以及大型hadoop商业实战案例. 讲的很细致, MapReduce 就讲了 15 个小时. 学完后可以胜任 hadoop 的开发工作,很多人学的这个课程找到的工作. (包括指导书.练习代码.和…
之前写过关于Hadoop方面的MapReduce框架的文章MapReduce框架Hadoop应用(一) 介绍了MapReduce的模型和Hadoop下的MapReduce框架,此文章将进一步介绍mapreduce计算模型能用于解决什么问题及有什么巧妙优化. MapReduce到底解决什么问题? MapReduce准确的说,它不是一个产品,而是一种解决问题的思路,能够用分治策略来解决问题.例如:网页抓取.日志处理.索引倒排.查询请求汇总等等问题.通过分治法,将一个大规模的问题,分解成多个小规模的问…
前言 项目中运用了Spark进行Kafka集群下面的数据消费,本文作为一个Spark入门文章/笔记,介绍下Spark基本概念以及MapReduce模型 Spark的基本概念: 官网: http://spark.apache.org/ 给出了如下概念 Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark™是用于大规模数据处理的统一分析引擎.当然,它也适用于AI人工智能. A…
MapReduce计算模型 MapReduce两个重要角色:JobTracker和TaskTracker. ​ MapReduce Job 每个任务初始化一个Job,没个Job划分为两个阶段:Map和Reduce阶段. Map函数接受一个<key, value>形式的输入,输出一个<key, value>形式的中间输出. Hadoop负责将所有的相同中间key值的value集合到一起传递给Reduce函数. Reduce函数接受一个<key, (list of value)&…
1. MapReduce基本编程模型和框架 1.1 MapReduce抽象模型 大数据计算的核心思想是:分而治之.如下图所示.把大量的数据划分开来,分配给各个子任务来完成.再将结果合并到一起输出.注:如果数据的耦合性很高,不能分离,那么这种并行计算就不合适了. 图1: MapReduce抽象模型 1.2 Hadoop的MapReduce的并行编程模型 如下图2所示,Hadoop的MapReduce先将数据划分为多个key/value键值对.然后输入Map框架来得到新的key/value对,这时候…
1)迭代MapReduce计算任务,就是在一个循环内多次执行一个MapReduce. 2)顺序组合式MapReduce作业的执行 MapReduce1—>MapReduce2—>MapReduce3 MapReduce1的输出作为MapReduce的输入,MapReduce2的输出作为MapReduce3的输入.先执行MapReduce1,等其执行完毕再执行MapReduce2,等MapReduce2执行完毕,再执行MapReduce3. 3)具有复杂依赖关系的组合式MapReduce作业的执…
:对云计算的看法 内容 :使用MapReduce求每年最低温度 内容 :求温度平均值能使用combiner吗? 内容 :使用Hadoop流求最高温度(awk脚本) 内容 :使用Hadoop流求最高温度(Python语言) 内容 :MapReduce是否可以自动识别新增节点? 内容 :使用Hadoop公平调度器 内容 中新增节点后,DataNode无法启动 运行环境说明 1.1  硬软件环境 线程,主频2.2G,6G内存 l  虚拟软件:VMware® Workstation 9.0.0 buil…
本文基于hadoop2.x架构详细描述了mapreduce的执行过程,包括partition,combiner,shuffle等组件以及yarn平台与mapreduce编程模型的关系. mapreduce的简介和优点 mapreduce是一个分布式运算程序的编程框架,是hadoop数据分析的核心. mapreduce的核心思想是将用户编写的逻辑代码和架构中的各个组件整合成一个分布式运算程序,实现一定程序的并行处理海量数据,提高效率. 海量数据难以在单机上处理,而一旦将单机版程序扩展到集群上进行分…
前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角色:一个是JobTracker,一个是TaskTracker,前者用于管理和调度工作,后者用于执行工作. 一般来说,一个Hadoop集群由一个JobTracker和N个TaskTracker构成. 执行流程 每次计算任务都可以分为两个阶段,Map阶段和Reduce阶段. 其中,Map阶段接收一组键值…
因为项目需求,须要通过Java程序提交Yarn的MapReduce的计算任务.与一般的通过Jar包提交MapReduce任务不同,通过程序提交MapReduce任务须要有点小变动.详见下面代码. 下面为MapReduce主程序,有几点须要提一下: 1.在程序中,我将文件读入格式设定为WholeFileInputFormat,即不正确文件进行切分. 2.为了控制reduce的处理过程.map的输出键的格式为组合键格式. 与常规的<key,value>不同,这里变为了<TextPair,Va…
5.2 基于压缩的高效存储(续) (仅包括技术27) 技术27 在MapReduce,Hive和Pig中使用可分块的LZOP 如果一个文本文件即使经过压缩后仍然比HDFS的块的大小要大,就需要考虑选择一个支持分块的压缩编码器,以防一个单一的map任务来处理整个超大的文件. LZOP可以满足分块的要求,但是使用起来很复杂.原因在于LZOP不是直接支持分块.LZOP是基于块的格式,但是并不支持块的随机访问. 问题 需要选择一个压缩编码器使MapReduce可以调用多个任务并行处理一个单一的压缩文件.…
5.2 基于压缩的高效存储 (仅包括技术25,和技术26) 数据压缩可以减小数据的大小,节约空间,提高数据传输的效率.在处理文件中,压缩很重要.在处理Hadoop的文件时,更是如此.为了让Hadoop更高效处理文件,就需要选择一个合适的压缩编码器,加快作业运行,增加集群的数据存储能力. 技术25 为待处理数据选择正确的压缩编码器在HDFS上使用压缩并不像ZFS文件系统上那样透明,特别是在处理那些可分块的压缩文件时.(这些将在本章中稍后介绍.)由于Avro和SequenceFiles等文件格式提供…
问题描写叙述:给定一个大文件,文件里的内容每一行为:文档名,文档内容. input 文档名1,word1 Word2 ....... 文档名2,word1 Word2 ....... output word  文档名  tfidf值 package com.elex.mapreduce; import java.io.IOException; import java.net.URI; import java.util.HashMap; import java.util.Iterator; imp…
前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角色:一个是JobTracker,一个是TaskTracker,前者用于管理和调度工作,后者用于执行工作. 一般来说,一个Hadoop集群由一个JobTracker和N个TaskTracker构成. 执行流程 每次计算任务都可以分为两个阶段,Map阶段和Reduce阶段. 其中,Map阶段接收一组键值…
温度排序代码,具体说明可以搜索其他博客 KeyPair.java package temperaturesort; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.WritableComparable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; public class KeyPair i…
利用mapreduce求出股票价格的开盘和收盘平均数 下图为采集到的股票信息,共计1416支股票的信息 因为在linux系统下默认采用utf-8的编码格式,而在win下txt默认采用ANSI编码格式.所以需要在linux下将文件转换一下格式,可以采用: 递归转换(包括子文件夹) find default -type d -exec mkdir -p utf/{} \; find default -type f -exec iconv -f GBK -t UTF-8 {} -o utf/{} \;…
二.计算向数据移动如何实现? Hadoop1.x(已经淘汰): hdfs暴露数据的位置 1)资源管理 2)任务调度 角色:JobTracker&TaskTracker JobTracker: 资源管理.任务调度(主) TaskTracker:任务管理.资源汇报(从) Client: 1.会根据每次计算数据,咨询NN的元数据(block).算:split 得到一个切片的清单 map的数量就有了 2.split是逻辑的,block是物理的,block身上有(offset,locatios),spli…
一.为什么叫MapReduce? Map是以一条记录为单位映射 Reduce是分组计算…
@ 目录 概念 MapReduce中常用的组件 概念 Job(作业) : 一个MapReduce程序称为一个Job. MRAppMaster(MR任务的主节点): 一个Job在运行时,会先启动一个进程,这个进程称为MRAppMaster,负责Job中执行状态的监控,容错,和RM申请资源,提交Task等. Task(任务): Task是一个进程,负责某项计算. Map(Map阶段):Map是MapReduce程序运行的第一个阶段,Map阶段的目的是将输入的数据,进行切分.将一个大文件,切分为若干小…
目录 1 - 什么是 MapReduce 2 - MapReduce 的设计思想 2.1 如何海量数据:分而治之 2.2 方便开发使用:隐藏系统层细节 2.3 构建抽象模型:Map 和 Reduce 3 - MapReduce 的优劣 3.1 MapReduce 的优势 3.2 MapReduce 的限制 参考资料 版权声明 1 - 什么是 MapReduce 维基百科中,MapReduce 是 Google 提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算. MapReduce 是…
MapReduce的计算流程 1.1 原始数据File The books chronicle the adventures of the adolescent wizard Harry Potter and his best friends Ron Weasley and Hermione Granger, all of whom are students at Hogwarts School of Witchcraft and Wizardry. 1T数据被切分成块存放在HDFS上,每一个块…