调试Spark应用】的更多相关文章

欢迎转载,转载请注明出处,徽沪一郎. 概要 上篇博文讲述了如何通过修改源码来查看调用堆栈,尽管也很实用,但每修改一次都需要编译,花费的时间不少,效率不高,而且属于侵入性的修改,不优雅.本篇讲述如何使用intellij idea来跟踪调试spark源码. 前提 本文假设开发环境是在Linux平台,并且已经安装下列软件,我个人使用的是arch linux. jdk scala sbt intellij-idea-community-edition 安装scala插件 为idea安装scala插件,具…
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ jps8457 Jpsspark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/loc…
参考:http://dataknocker.github.io/2014/11/12/idea%E4%B8%8Adebug-spark-standalone/ 转载请注明来自:http://www.cnblogs.com/yuananyun/p/4265706.html 研究Spark源码也有一段时间了,一直都是直接看代码,没有调试.虽然带着思路去看源代码已经能够帮助我们去了解Spark了:但是很多细节从字面上是看不出来的,如果我能够通过运行时调试验证我的想法,或者能够查看某个类中变量和结构在运…
在IDEA中调试spark程序会报错 18/05/16 07:33:51 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable18/05/16 07:33:51 ERROR SparkContext: Error initializing SparkContext.org.apache.spark.Sp…
一 编译  以spark2.4 hadoop2.8.4为例 1,spark 项目根pom文件修改 pom文件新增 <profile> <id>hadoop-2.8</id> <properties> <hadoop.version>2.8.4</hadoop.version> </properties> </profile> maven仓库地址增加 <repository> <id>bi…
关于这个spark的环境搭建了好久,踩了一堆坑,今天 环境: WIN7笔记本  spark 集群(4个虚拟机搭建的) Intelij IDEA15 scala-2.10.4 java-1.7.0 版本问题: 个人选择的是hadoop2.6.0 spark1.5.0 scala2.10.4  jdk1.7.0 关于搭建集群环境,见个人的上一篇博客:(一) Spark Standalone集群环境搭建,接下来就是用Intelij IDEA来远程连接spark集群,这样就可以方便的在本机上进行调试.…
spark程序大致有如下运行模式: standalone模式:spark自带的模式 spark on yarn:利用hadoop yarn来做集群的资源管理 local模式:主要在测试的时候使用, 这三个模式先大致了解,目前我用到的就是local和yarn.其中,我们写spark程序,一般在idea上写,若每次都要将程序打包,再上传到集群,再运行,将严重影响我们效率,所以在调试代码的时候,一般用local模式,在windows的idea上直接操作. 环境配置步骤如下:只做简要说明,各个步骤的具体…
spark用的是cdh spark-2.0.1 package main.scala import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* Created by tomtang on 2016/12/16. */ object tomhelloworld { def FILE_NAME:String = "word_count_results_" def main(arg…
1.问题 java.lang.OutOfMemoryError: PermGen space java.lang.OutOfMemoryError: Java heap space // :: WARN NettyRpcEndpointRef: Error sending message [message = Heartbeat(driver,[Lscala.Tuple2;@631e6c90,BlockManagerId(driver, localhost, ))] attempts org.a…
本文摘自:<Hadoop专家-管理.调优与Spark|YARN|HDFS安全>Sam R. Alapati 一.通过日志聚合访问日志 二.当日志聚合未开启时…
https://note.youdao.com/share/?id=753c443aa4a665679d8d00c9c50363b0&type=note#/…
报错内容 ERROR util.Shell: Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries. 解决方法 1. 下载windows编译版的Hadoop 2. 新增系统环境变量%HADOOP_HOME% 3. 配置系统变量PATH 4.…
我们在编写Spark Application或者是阅读源码的时候,我们很想知道代码的运行情况,比如参数设置的是否正确等等.用Logging方式来调试是一个可以选择的方式,但是,logging方式调试代码有很多的局限和不便.今天我就来介绍如何通过IDE来远程调试Spark的Application或者是Spark的源码. 本文以调试Spark Application为例进行说明,本文用到的IDE是Eclipse.步骤如下: 一.JVM里面设置以下参数 -Xdebug -Xrunjdwp:transp…
1 概述 开发调试spark程序时,因为要访问开启kerberos认证的hive/hbase/hdfs等组件,每次调试都需要打jar包,上传到服务器执行特别影响工作效率,所以调研了下如何在windows环境用idea直接跑spark任务的方法,本文旨在记录配置本地调试环境中遇到的问题及解决方案. 2 环境 Jdk 1.8.0 Spark 2.1.0 Scala 2.11.8 Hadoop 2.6.0-cdh5.12.1 Hive 1.1.0-cdh5.12.1 环境搭建略,直接看本地调试spar…
1. 背景 (1) spark的一般开发与运行流程是在本地Idea或Eclipse中写好对应的spark代码,然后打包部署至驱动节点,然后运行spark-submit.然而,当运行时异常,如空指针或数据库连接等出现问题时,又需要再次修改优化代码,然后再打包....有木有可能只需一次部署? (2) 当新版本的spark发布时,想立刻马上体验新特性,而当前没有现成的spark集群,或spark集群版本较老,又如何体验新特性呢? 2. 方案 (1) 无需多次打包测试,直接在本地测试或调试通过,然后只需…
参考:spark开发环境搭建(基于idea 和maven) 安装JDK 从这里下载Java 8的JDK 设置JAVA_HOME环境变量,在Mac上它大概会是/Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home/这个样子 我选择的是在~/.bash_profile文件里添加一句: export JAVA_HOME=/path/to/JDK,路径换成自己的JDK路径 安装Maven Mac下用Brew安装即可: brew i…
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当作一个数组,这样的理解对我们学习RDD的API是非常有帮助的.本文所有示例代码都是使用scala语言编写的. Spark里的计算都是操作RDD进行,那么学习RDD的第一个问题就是如何构建RDD,构建RDD从数据来源角度分为两类:第一类是从内存里直接读取数据,第二类就是从文件系统里读取,当然这里的文件…
自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售,欢迎感兴趣的同学购买.我开始研究源码时的Spark版本是1.2.0,经过7个多月的研究和出版社近4个月的流程,Spark自身的版本迭代也很快,如今最新已经是1.6.0.目前市面上另外2本源码研究的Spark书籍的版本分别是0.9.0版本和1.2.0版本,看来这些书的作者都与我一样,遇到了这种问题.由于研究和…
前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apache Spark简介 Spark的四种运行模式 Spark基于Standlone的运行流程 Spark基于YARN的运行流程 Apache Spark是什么? Spark是一个用来实现快速而通用的集群计算的平台.扩展了广泛使用的MapReduce计算模型,而且高效地支持更多的计算模式,包括交互式查询和流处理.在处理大规模数据集的时候,速度是非常重要的.Spark的一个重要特点就是能够在内存中计算,因…
压缩过的大数据Spark蘑菇云行动前置课程视频百度云分享链接 链接:http://pan.baidu.com/s/1cFqjQu SCALA专辑 Scala深入浅出经典视频 链接:http://pan.baidu.com/s/1i4Gh3Xb 密码:25jc DT大数据梦工厂大数据spark蘑菇云Scala语言全集(持续更新中) http://www.tudou.com/plcover/rd3LTMjBpZA/ 1 Spark视频王家林第1课:大数据时代的“黄金”语言Scala 2 Spark视…
昨天写完R脚本 没测试就发到博客里, 结果实际运行发现很慢,运行时间在2小时以上, 查看spark控制台, 大量时间消耗在count上, 产生的stage多大70多个 . 分析原因. 1  select *可以优化,  2 join操作可以放倒hive sql里的尽量放到hive sql里 这两个优化, 最终目的都是为了减少I/O操作.  hive数据到spark cache的数据量可以减少. 而且可能hive对join操作也有特别的优化. 这两个优化带来的坏处也是显而易见的, 代码可读性下降,…
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 版次:1-1 所属分类: 计算机 > 数据库 > 数据库存储与管理 编辑推荐 根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,已经BDAS生态系统的相关技术. 内容简介 书籍计算机书籍 这是一本依据最新技术版本,系统.全面.详细讲解Spark…
摘要:      Sprak Streaming属于Saprk API的扩展,支持实时数据流(live data streams)的可扩展,高吞吐(hight-throughput) 容错(fault-tolerant)的流处理.可以接受来自KafKa,Flume,ZeroMQ Kinesis  Twitter或TCP套接字的数据源,处理的结果数据可以存储到文件系统 数据库 现场dashboards等.   DStream编程模型 Dstream是Spark streaming中的高级抽象连续数…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技术. 作为一个基于内存计算的大数据并行计算框架,Spark不仅很好地解决了数据的实时处理问题,而且保证了高容错性和高可伸缩性.具体来讲,它有如下优势: 打造全栈多计算范式的高效数据流水线 轻量级快速处理 易于使用,支持多语言 与HDFS等存储层兼容 社区活跃度高 -- Spark已经在全球范围内广泛使用,无论…
1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备Spark应用程序的运行环境.在Spark中由S…
调试资源分配   Spark 的用户邮件邮件列表中经常会出现 "我有一个500个节点的集群,为什么但是我的应用一次只有两个 task 在执行",鉴于 Spark 控制资源使用的参数的数量,这些问题不应该出现.但是在本章中,你将学会压榨出你集群的每一分资源.推荐的配置将根据不同的集群管理系统(YARN.Mesos.Spark Standalone)而有所不同,我们将主要集中在YARN 上,因为这个Cloudera 推荐的方式.Spark(以及YARN) 需要关心的两项主要的资源是 CPU…
当你开始编写 Apache Spark 代码或者浏览公开的 API 的时候,你会遇到各种各样术语,比如transformation,action,RDD(resilient distributed dataset) 等等. 了解到这些是编写 Spark 代码的基础. 同样,当你任务开始失败或者你需要透过web界面去了解自己的应用为何如此费时的时候,你需要去了解一些新的名词: job, stage, task.对于这些新术语的理解有助于编写良好 Spark 代码.这里的良好主要指更快的 Spark…
http://blog.csdn.net/pipisorry/article/details/52366288 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建Spark…
第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2.4 配置 Spark Standalone 模式2.5 配置 Spark History Server2.6 配置 Spark HA2.7 配置 Spark Yarn 模式第3章 执行 Spark 程序3.1 执行第一个 spark 程序3.2 Spark 应用提交3.3 Spark shell3…