Harris Corner】的更多相关文章

在做图像匹配时,常需要对两幅图像中的特征点进行匹配.为了保证匹配的准确性,所选择的特征必须有其独特性,角点可以作为一种不错的特征. 那么为什么角点有其独特性呢?角点往往是两条边缘的交点,它是两条边缘方向变换的一种表示,因此其两个方向的梯度变换通常都比较大并且容易检测到. 这里我们理解一下Harris Corner 一种角点检测的算法 角点检测基本原理: 人们通常通过在一个小的窗口区域内观察点的灰度值大小来识别角点,如果往任何方向移动窗口都会引起比较大的灰度变换那么往往这就是我们要找的角点.如下图…
Harris Corner网上已经有很多的资料了,但它也是我读研究生后读的第一篇论文,对我有一种特别的意义. 这篇文章我想从几个方面来讲解Harris Corner,一是Harris Corner的思想,二是Harris Corner重要公式的推导,三是从图像的层面直观的观察每一个公式的结果.本人能力有限,如有纰漏,万望指正.Any advice and suggestions will be greatly appreciated. 我们的目的是在图像上找到角点.那我们在图像上设置一个小窗,然…
一.基本概念 角点corner:可以将角点看做两个边缘的交叉处,在两个方向上都有较大的变化.具体可由下图中分辨出来: 兴趣点interest point:兴趣点是图像中能够较鲁棒的检测出来的点,它不仅仅局限于角点. 也可以是灰度图像极大值或者极小值点等 二.Harris角点检测 Harris 算子是 Haris & Stephens 1988年在 "A Combined Corner and Edge Detector" 中提出的 提出的检测算法, 现在已经成为图像匹配中常用的…
Harris.Shi-Tomasi和亚像素角点都是角点,隶属于特征点这个大类(特征点可以分为边缘.角点.斑点). 一.Harris角点检测是一种直接基于灰度图像的角点提取算法,稳定性较高,但是也可能出现有用信息丢失的情况. 函数:cornerHarris() void cv::cornerHarris ( InputArray  src,  //需要为8位单通道     OutputArray  dst,  //结果     int  blockSize, //领域大小     int  ksi…
      计算机视觉中,我们经常要匹配两幅图像.匹配的的方式就是通过比较两幅图像中的公共特征,比如边,角,以及图像块(blob)等,来对两幅图像进行匹配.      相对于边,角更适合描述图像特征,比如下面的图像中,大概有6种特征,我们用A.B.C.D.E.F来描述,其中A, B是平的区域,在图像中很难精确定位,C,D是边,比A,B好些,但是图像中的边也很多,定位到某个边也比较困难,相比来说E,F的角更适合描述当前的图像的特征,也更好检测,因为你不论怎么移动图像,这些角的特征都和图像其它部分不…
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src; src = imread(); if (src.empty()){ printf("Can not load Image..."); ; } imshow("input Image&quo…
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的connerHarris实现角点检測 自己实现Harris算法 以下是自己实现的一个效果图 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/…
一.基本概念 角点corner:可以将角点看做两个边缘的交叉处,在两个方向上都有较大的变化.具体可由下图中分辨出来: 兴趣点interest point:兴趣点是图像中能够较鲁棒的检测出来的点,它不仅仅局限于角点. 也可以是灰度图像极大值或者极小值点等 二.Harris角点检测 Harris 算子是 Haris & Stephens 1988年在 "A Combined Corner and Edge Detector" 中提出的 提出的检测算法, 现在已经成为图像匹配中常用的…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 特征点检测广泛应用到目标匹配,目标跟踪,三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色,角点,特征点,轮廓,纹理等特征.而下面学习常用的特征点检测. 总结一下提取特征点的作用: 1,运动目标跟踪 2,物体识别 3,图像配准 4,全景图像拼接 5,三维重建 而一种重要的点…
Computer Vision Project 2 – Harris Corner Detector 姓名: 王兴路 学号: 3140102282 指导老师: 宋明黎 2016-12-16 19:30:22 星期五 Content: Computer Vision Project 2 – Harris Corner DetectorReadMeRun DemoDevelop PlatformFileListFunctionalityImplementationPipelineSecond Mom…