机器学习-RBF高斯核函数处理】的更多相关文章

 机器学习-RBF高斯核函数处理 SVM高斯核函数-RBF优化 重要了解数学的部分: 协方差矩阵,高斯核函数公式. 个人建议具体的求法还是看下面的核心代码吧,更好理解,反正就我个人而言,烦躁的公式,还不如一段代码来的实际.本来想用Java的一个叫jblas的矩阵包,但是想了想,还是自己动手写一下吧.加深一下自己理解.实现的语言用的是java孪生兄弟Scala.我想应该不难懂.矩阵变换用二位数组将就. 以下代码建议用scala命令行调试 核心代码 def TransposedMatrix(a:Ar…
一.核函数(Kernel Function) 1)格式 K(x, y):表示样本 x 和 y,添加多项式特征得到新的样本 x'.y',K(x, y) 就是返回新的样本经过计算得到的值: 在 SVM 类型的算法 SVC() 中,K(x, y) 返回点乘:x' . y' 得到的值: 2)多项式核函数 业务问题:怎么分类非线性可分的样本的分类? 内部实现: 对传入的样本数据点添加多项式项: 新的样本数据点进行点乘,返回点乘结果: 多项式特征的基本原理:依靠升维使得原本线性不可分的数据线性可分: 升维的…
知识预备 1. 回顾:logistic回归出发,引出了SVM,即支持向量机[续]. 2.  Mercer定理:如果函数K是上的映射(也就是从两个n维向量映射到实数域).那么如果K是一个有效核函数(也称为Mercer核函数),那么当且仅当对于训练样例,其相应的核函数矩阵是对称半正定的. 核函数描述和分析 考虑在” 回归和梯度下降 “一节的“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来…
XVec表示X向量.||XVec||表示向量长度.r表示两点距离.r^2表示r的平方.k(XVec,YVec) = exp(-1/(2*sigma^2)*(r^2))= exp(-gamma*r^2)...... 公式-1这里, gamma=1/(2*sigma^2)是参数, r=||XVec-YVec||实际上,可看作是计算2个点X与Y的相似性.很多参考书上,把YVec写作XVec',即 k(XVec, XVec'),也是一样的含义:两点相似性.由于Matlab上面XVec'代表XVec的转置…
第一部分: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对…
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics import adjusted_rand_score from sklearn.datasets.samples_generator import make_blobs def create_data(centers,num=100,std=0.7): X, labels_true = make_b…
Mixtures of Gaussian 这一讲,我们讨论利用EM (Expectation-Maximization)做概率密度的估计.假设我们有一组训练样本x(1),x(2),...x(m),因为是unsupervised的学习问题,所以我们没有任何y的信息. 我们希望利用一个联合分布p(x(i),z(i))=p(x(i)|z(i))p(z(i))来拟合这些数据, 其中z(i)∼Multinomial(ϕ) (ϕj⩾0, ∑kj=1ϕj=1,参数ϕj给出了概率p(z(i)=j)),并且 x(…
机器学习-SVM-手写识别问题 这里我们解决的还是之前用KNN曾经解决过的手写识别问题(https://www.cnblogs.com/jiading/p/11622019.html),但相比于KNN,SVM好的地方在于一旦我们的模型训练完成,我们就可以得到一个确定的决策超平面,当然这个超平面的w是用所有的支持向量来描述的,这就表示我们发布模型的时候只需要包括所有的支持向量在内就可以了,剩下所有的向量都可以舍弃,和每次都需要所有向量的KNN相比,这就大大减小了模型的大小. 注意,这里举的是一个二…
一.SVM简介 (一)Support Vector Machine 支持向量机(SVM:Support Vector Machine)是机器学习中常见的一种分类算法. 线性分类器,也可以叫做感知机,其中机表示的是一种算法. 在实际应用中,我们往往遇到这样的问题: 给定一些数据点,它们分别属于两个不同的类.我们现在要找到一个线性分类器把这些数据分成AB两类.最简单的办法当然是,画一条线,然后将它们分成两类.线的一侧,属于A类,另一侧,则属于B类.SVM算法可以让我们找到这样一个最佳的线(超平面),…
说在前面:前几天,公众号不是给大家推送了第二篇关于决策树的文章嘛.阅读过的读者应该会发现,在最后排版已经有点乱套了.真的很抱歉,也不知道咋回事,到了后期Markdown格式文件的内容就解析出现问题了,似乎涉及到Latex就会多多少少排版错乱???暂时也没什么比较好的解决办法,如果有朋友知道的可以联系下Taoye,长时间用Markdown + Latex码文已成习惯了,关于机器学习文章的内容,更好的阅读体验,大家可以跳转至我在Cmd Markdown平台发布的内容,也可前往我的掘金主页,阅读体验都…
//看了多少遍SVM的数学原理讲解,就是不懂,对偶形式推导也是不懂,看来我真的是不太适合学数学啊,这是面试前最后一次认真的看,并且使用了sklearn包中的SVM来进行实现了一个鸢尾花分类的实例,进行进一步的理解. 1.鸢尾花分类实例 转自:https://www.cnblogs.com/luyaoblog/p/6775342.html 数据集: 特点:每个属性及标记之间使用逗号进行隔开. #encoding:utf-8 from sklearn import svm import numpy…
支持向量机(Support vector machine, SVM)是一种二分类模型,是按有监督学习方式对数据进行二元分类的广义线性分类器. 支持向量机经常应用于模式识别问题,如人像识别.文本分类.手写识别.生物信息识别等领域. 1.支持向量机(SVM)的基本原理 SVM 的基本模型是特征空间上间隔最大的线性分类器,还可以通过核函数方法扩展为非线性分类器. SVM 的分割策略是间隔最大化,通过寻求结构化风险最小来提高模型的泛化能力,实现经验风险和置信范围的最小化.SVM 可以转化为求解凸二次规划…
1:高斯RBF核函数的定义 k(x) = exp(-x^2/(2×sigma)) 在MATLAB中输入一下代码:ezsurf('exp(-x^2/(2*sigma^2))'); 在GOOGLE中输入“exp(-(x)^2/(2*y^2)), x is from -10 to 10, y is from -10 to 10”,可以得到三维动画绘图. 2.绘制不同sigma下的SVM分离面 load fisheriris; xdata = meas(:end,:); group = species(…
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 机器学习之支持向量机(一):支持向量机的公式推导 机器学习之支持向量机(二):SMO算法 机器学习之支持向量机(…
一.高斯核函数.高斯函数 μ:期望值,均值,样本平均数:(决定告诉函数中心轴的位置:x = μ) σ2:方差:(度量随机样本和平均值之间的偏离程度:, 为总体方差,  为变量,  为总体均值,  为总体例数) 实际工作中,总体均数难以得到时,应用样本统计量代替总体参数,经校正后,样本方差计算公式:S^2= ∑(X-  ) ^2 / (n-1),S^2为样本方差,X为变量,  为样本均值,n为样本例数. σ:标准差:(反应样本数据分布的情况:σ 越小高斯分布越窄,样本分布越集中:σ 越大高斯分布越…
一.简介 前两节分别实现了硬间隔支持向量机与软间隔支持向量机,它们本质上都是线性分类器,只是软间隔对"异常点"更加宽容,它们对形如如下的螺旋数据都没法进行良好分类,因为没法找到一个直线(超平面)能将其分隔开,必须使用曲线(超曲面)才能将其分隔,而核技巧便是处理这类问题的一种常用手段. import numpy as np import matplotlib.pyplot as plt import copy import random import os os.chdir('../')…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 12.4 核函数与标记点- Kernels and landmarks 问题引入 如果你有以下的训练集,然后想去拟合其能够分开正负样本的非线性判别边界. 一种办法是构造一个复杂多项式特征的集合: \[h_{\theta}(x)=\begin{cases} 1\ \ if\ \ \theta_{0}+\theta_{1}x_1+\theta_{2}x_2+\theta_{3}x_1x_2+\theta_{4}x_{1}^{2…
应用kernels来进行非线性分类 非线性分类:是否存在好的features的选择(而不是多项式)--f1,f2,f3.... 上图是一个非线性分类的问题,前面讲过,我们可以应用多项式(features)来构造hypothesis来解决复杂的非线性分类问题. 我们将x1,x2,x1x2.....替换成f1,f2,f3......,那么是否有更好的features的选择呢(而不是这些多项式做为features),因为我们知道以这些多项式做为features,次数较高,计算较复杂. 使用Kernel…
转自: [基础]常用的机器学习&数据挖掘知识点 Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率),JP(Joint Probability 联合概…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
推导了支持向量机的数学公式后,还需要对比和总结才能更深入地理解这个模型,所以整理了十一个关于支持向量机的问题. 第一问:支持向量机和感知机(Perceptron)的联系? 1.相同点: 都是一种属于监督学习的二类分类器,都属于判别模型.感知机是支持向量机的基础. 2.不同点: (1)学习策略:感知机是用误分类损失函数最小的策略,求得分离超平面.M为误分类点个数,则目标函数为 支持向量机是用几何间隔最大化的策略,求最优分离超平面.某点的几何间隔为: 线性可分支持向量机的目标函数和优化问题为: 支持…
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决什么问题? 最基本的应用是数据分类,特别是对于非线性不可分数据集.支持向量机不仅能对非线性可分数据集进行分类,对于非线性不可分数据集的也可以分类 (我认为这才是支持向量机的真正魅力所在,因为现实场景中,样本数据往往是线性不可分的). 现实场景一 :样本数据大部分是线性可分的,但是只是在样本中含有少量…
人工智能 人工智能(Artificial Intelligence),英文缩写为AI.它是研究.开发用于模拟.延伸和扩展人的智能的理论.方法.技术及应用系统的一门新的技术科学. 人工智能是对人的意识.思维的信息过程的模拟.人工智能不是人的智能,但能像人那样思考.也可能超过人的智能. 人工智能的定义可以分为两部分,即“人工”和“智能”. 机器学习 1.    什么是机器学习 根据等人事件中判断人是否迟到了解什么是机器学习,具体参见地址:http://www.cnblogs.com/helloche…
基本概念 支持向量机(support vector machines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器.支持向量机还包括核技巧,这使它成为实质上的非线性分类器.其学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题,也等价于正则化的合页损失函数的最小化问题,支持向量机的学习算法是求解凸二次规划的最优化算法. 支持向量机学习方法包含构建由简至繁的模型:线性可分支持向量机(linear s…
原文:http://blog.csdn.net/heyongluoyao8/article/details/47840255 常见的机器学习&数据挖掘知识点 转载请说明出处 Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Error, 相对误差和) MSE(Mean Squared Error, 均方误差) RMSE(Root Mean Square…
前言: 对于SVM的了解,看前辈写的博客加上读论文对于SVM的皮毛知识总算有点了解,比如线性分类器,和求凸二次规划中用到的高等数学知识.然而SVM最核心的地方应该在于核函数和求关于α函数的极值的方法:SMO算法(当然还有很多别的算法.libsvm使用的是SMO,SMO算法也是最高效和简单的),还有松弛变量..毕设答辩在即,这两个难点只能拖到后面慢慢去研究了. 于是我便是用了LibSvm,也就是台湾大学某某教授写的一个专门用于svm的工具包,其中有java语言的,python语言的,c语言的.我只…
在浏览本篇博客之前,最好先查看一下我写的还有一篇文章机器学习之初识SVM(点击可查阅哦).这样能够更好地为了结以下内容做铺垫! 支持向量机学习方法包括构建由简至繁的模型:线性可分支持向量机.线性支持向量机及非线性支持向量机.当训练数据线性可分时.通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机.又称为硬间隔支持向量机:当训练数据近似线性可分时.通过软间隔最大化,也学习一个线性的分类器,即线性支持向量机,又称为软间隔支持向量机:当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习…
一.什么是SVM? SVM(Support Vector Machine)又称为支持向量机,是一种二分类的模型.当然如果进行修改之后也是可以用于多类别问题的分类.支持向量机可以分为线性和非线性两大类.其主要思想为找到空间中的一个更够将所有数据样本划开的超平面,并且使得本集中所有数据到这个超平面的距离最短. 那么,又怎么表示这个“都正确”呢?可以这样考虑:就是让那些“很有可能不正确”的数据点彼此分开得明显一点就可以了.对于其它“不那么可能不正确”或者说“一看就很正确”的数据点,就可以不用管了.这也…
一引言: 支持向量机这部分确实很多,想要真正的去理解它,不仅仅知道理论,还要进行相关的代码编写和测试,二者想和结合,才能更好的帮助我们理解SVM这一非常优秀的分类算法 支持向量机是一种二类分类算法,假设一个平面可以将所有的样本分为两类,位于正侧的样本为一类,值为+1,而位于负一侧的样本为另外一类,值为-1. 我们说分类,不仅仅是将不同的类别样本分隔开,还要以比较大的置信度来分隔这些样本,这样才能使绝大部分样本被分开.比如,我们想通过一个平面将两个类别的样本分开,如果这些样本是线性可分(或者近视线…
SVM 的英文叫 Support Vector Machine,中文名为支持向量机.它是常见的一种分类方法,在机器学习中,SVM 是有监督的学习模型. 什么是有监督的学习模型呢?它指的是我们需要事先对数据打上分类标签,这样机器就知道这个数据属于哪个分类.同样无监督学习,就是数据没有被打上分类标签,这可能是因为我们不具备先验的知识,或者打标签的成本很高.所以我们需要机器代我们部分完成这个工作,比如将数据进行聚类,方便后续人工对每个类进行分析.SVM 作为有监督的学习模型,通常可以帮我们模式识别.分…