首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
mapReduce的shuffle过程
】的更多相关文章
MapReduce的Shuffle过程介绍
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Reduce的数据来源于Map,Map的输出即是Reduce…
Hadoop MapReduce的Shuffle过程
一.概述 理解Hadoop的Shuffle过程是一个大数据工程师必须的,笔者自己将学习笔记记录下来,以便以后方便复习查看. 二. MapReduce确保每个reducer的输入都是按键排序的.系统执行排序.将map输出作为输入传给reducer的过程称为Shuffle. 2.1 map端 map函数开始产生输出时,利用缓冲的方式写到内存并排序具体分一下几个步骤. 1.map数据分片:把输入数据源进行分片,根据分片来决定有多少个map,每个map任务都有一个环形内存缓冲区用于存储任务输出,默认情况…
mapReduce的shuffle过程
http://www.jianshu.com/p/c97ff0ab5f49 总结shuffle 过程: map端的shuffle: (1)map端产生数据,放入内存buffer中: (2)buffer满的时候,将buffer里面的数据按照key来快排,然后写到磁盘中; (3)上面每次buffer满都会产生一个磁盘文件,最终会有很多磁盘文件,他们每个都排好序了,最后要把它们合并为一个大文件,就是一个merge的过程: reduce端的shuffle: (4)copy过程:reduce通过网络从ma…
MapReduce:Shuffle过程详解
1.Map任务处理 1.1 读取HDFS中的文件.每一行解析成一个<k,v>.每一个键值对调用一次map函数. <0,hello you> <10,hello me> 1.2 覆盖map(),接收1.1产生的<k,v>,进行处理,转换为新的<k,v>输出. <hello,1> <you,1> <hello,1> <me,1> 1.3 对1.2输出的<k,v&g…
MapReduce 的 shuffle 过程中经历了几次 sort ?
shuffle 是从map产生输出到reduce的消化输入的整个过程. 排序贯穿于Map任务和Reduce任务,是MapReduce非常重要的一环,排序操作属于MapReduce计算框架的默认行为,不管流程是否需要,都会进行排序. 在MapReduce计算框架中,主要用到了两种排序方法:快速排序和归并排序 1)快速排序:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据比另外一部分的所有数据都小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此使整个数…
Hadoop Mapreduce的shuffle过程详解
1.map task读取数据时默认调用TextInputFormat的成员RecoreReader,RecoreReader调用自己的read()方法,进行逐行读取,返回一个key.value; 2.返回的key.value交给自定义的map方法,输出的context.write(key,value),再交给内部的OutputCollecter会不断写入一个环形缓冲区 (就是一个数组,内存空间默认100M): 3.随着不断的写入,一般只占默认内存的80%,剩下的空间需要在溢出之前进行分区以及根据…
MapReduce的shuffle过程详解
[学习笔记] 结果分析:shuffle的英文是洗牌,混洗的意思,洗牌就是越乱越好的意思.当在集群的情况下是这样的,假如有三个map节点和三个reduce节点,一号reduce节点的数据会来自于三个map节点,而不是就来自于一号map节点.所以说它们的数据会混合,路线会交叉, 3叉3.想象一下,像不像洗牌? 马克-to-win @ 马克java社区:shuffle在MapReduce中是指map输出后到reduce接收前,按下面的官方shuffle图:具体可以分为map端和reduce端两个部分.…
【Big Data - Hadoop - MapReduce】通过腾讯shuffle部署对shuffle过程进行详解
摘要: 通过腾讯shuffle部署对shuffle过程进行详解 摘要:腾讯分布式数据仓库基于开源软件Hadoop和Hive进行构建,TDW计算引擎包括两部分:MapReduce和Spark,两者内部都包含了一个重要的过程—Shuffle.本文对Shuffle过程进行解析,并对两个计算引擎的Shuffle过程进行比较. 腾讯分布式数据仓库(Tencent distributed Data Warehouse, 简称TDW)基于开源软件Hadoop和Hive进行构建,并且根据公司数据量大.计算复杂等…
彻底理解MapReduce shuffle过程原理
彻底理解MapReduce shuffle过程原理 MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Redu…
hadoop的mapReduce和Spark的shuffle过程的详解与对比及优化
https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spark,mapReducehe和Spark之间的最大区别是前者较偏向于离线处理,而后者重视实现性,下面主要介绍mapReducehe和Spark两者的shuffle过程. MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随…