SVM回归】的更多相关文章

SVM回归 我们之前提到过,SVM算法功能非常强大:不仅支持线性与非线性的分类,也支持线性与非线性回归.它的主要思想是逆转目标:在分类问题中,是要在两个类别中拟合最大可能的街道(间隔),同时限制间隔侵犯(margin violations):而在SVM回归中,它会尝试尽可能地拟合更多的数据实例到街道(间隔)上,同时限制间隔侵犯(margin violation,也就是指远离街道的实例).街道的宽度由超参数ϵ控制.下图展示的是两个线性SVM回归模型在一些随机线性数据上训练之后的结果,其中一个有较大…
SVM的算法是很versatile的,在回归领域SVM同样十分出色的.而且和SVC类似,SVR的原理也是基于支持向量(来绘制辅助线),只不过在分类领域,支持向量是最靠近超平面的点,在回归领域,支持向量是那些距离拟合曲线(回归的目标函数/模型是拟合曲线). 上图我们看到还有一个变量,是ϵ,ϵ决定了街道的宽度,它是拟合曲线和支持向量的距离.在svr的实现原理上,定义的损失函数是: |yi−w∙ϕ(xi)−b|≤ϵ,则损失为0,因为落在了街道里面: |yi−w∙ϕ(xi)−b|>ϵ,则损失函数值为|y…
LIBSVM 使用的一般步骤是:1)准备数据集,转化为 LIBSVM支持的数据格式 :[label] [index1]:[value1] [index2]:[value2] ...即 [l类别标号] [特征1]:[特征值] [特征2]:[特征值] ...2)对数据进行简单的缩放操作(scale):(为什么要scale,这里不解释了)3)考虑选用核函数(通常选取径函数,程序默认):4)采用交叉验证(一般采用5折交叉验证),选择最佳参数C与g :5)用得到的最佳参数C与g 对整个训练集进行训练得到S…
简介:Libsvm is a simple, easy-to-use, and efficient software for SVM classification and regression. It solves C-SVM classification, nu-SVM classification, one-class-SVM, epsilon-SVM regression, and nu-SVM regression. It also provides an automatic model…
感谢中国人民大学胡鹤老师,课程深入浅出,非常好 关于SVM 可以做线性分类.非线性分类.线性回归等,相比逻辑回归.线性回归.决策树等模型(非神经网络)功效最好 传统线性分类:选出两堆数据的质心,并做中垂线(准确性低)--上图左 SVM:拟合的不是一条线,而是两条平行线,且这两条平行线宽度尽量大,主要关注距离车道近的边缘数据点(支撑向量support vector),即large margin classification--上图右 使用前,需要对数据集做一个scaling,以做出更好的决策边界(…
ng的MI-003中12 ——SVM 一.svm目标函数的由来 视频先将LR的损失函数: 在上图中,先将y等于0 和y等于1的情况集合到一起成为一个损失函数,然后分别讨论当y等于1的时候损失函数的结果图(上图左)和y等于0的时候的损失函数的结果图(上图右),这里先采用的是单一样本情况,而且图中的cost_1(z)是说明以前的曲线图现在用两条直线逼近图来代替,这里可以看出当z等于1的时候cost_1(z)等于0 ,而大于1也等于0,这就比之前的要容易计算,而且更简单,虽然有误差,但是这是为了后面的…
import pandas as pd # 导入第三方模块from sklearn import svmfrom sklearn import model_selectionfrom sklearn import metrics # 读取外部数据letters = pd.read_csv(r'F:\\python_Data_analysis_and_mining\\13\\letterdata.csv')print(letters.shape)# 数据前5行print(letters.head(…
原文:http://blog.sina.com.cn/s/blog_57a1cae80101bit5.html 举例说明 svmtrain -s 0 -?c 1000 -t 1 -g 1 -r 1 -d 3 data_file 训练一个由多项式核(u'v+1)^3和C=1000组成的分类器. svmtrain -s 1 -n 0.1 -t 2 -g 0.5 -e 0.00001 data_file 在RBF核函数exp(-0.5|u-v|^2)和终止允许限0.00001的条件下,训练一个?-SV…
#申明,本文章参考于 https://blog.csdn.net/yeoman92/article/details/75051848 import numpy as np import matplotlib.pyplot as plt # 生成数据 def gen_data(x1, x2): y = np.sin(x1) * 1/2 + np.cos(x2) * 1/2 + 0.1 * x1 return y def load_data(): x1_train = np.linspace(0,…
SVM用于线性回归 方法分析 在样本数据集()中,不是简单的离散值,而是连续值.如在线性回归中,预测房价.与线性回归类型,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面,采用作为预测值.为了获得稀疏解,即计算超平面参数w,b不依靠所有样本数据,而是部分数据(如在SVM分类算法中,支持向量的定义),采用误差函数 误差函数定义为,如果预测值与真实值的差值小于阈值将不对此样本做惩罚,若超出阈值,惩罚量为. 下图为误差函数与平方误差函数的图形 目标函数 观察上述的误差函数的形式,可…