pytorch更新】的更多相关文章

Pytorch如何更新版本与卸载,使用pip,conda更新卸载Pytorch 2018年05月22日 07:33:52 醉雨轩Y 阅读数 19047   今天我们主要汇总如何使用使用ubuntu,CentOS,Mac更新Pytorch和torchvision,以及如何查看当前python版本.本教程只汇集如何使用pip,conda更新以及卸载Pytorch和torchvision,希望对您有所帮助! 最近Pytorch从v0.1.12更新到了v0.2/v0.3,支持了很多方法,如果大家想知道详…
论文:Working hard to know your neighbor’s margins: Local descriptor learning loss  为什么介绍此文:这篇2018cvpr文章主要是从困难样本入手,提出的一个loss,简单却很有效,在图像匹配.检索.Wide baseline stereo等都做了大量详细实验,在真实任务中真正取得了state-of-the-art的结果.代码:https://github.com/DagnyT/hardnet .上一篇博客中的论文可以和…
Yolov5目标检测训练模型学习总结 一.YOLOv5介绍 YOLOv5是一系列在 COCO 数据集上预训练的对象检测架构和模型,代表Ultralytics 对未来视觉 AI 方法的开源研究,结合了在数千小时的研究和开发中获得的经验教训和最佳实践. 下面是YOLOv5的具体表现: 我们可以看到上面图像中,除了灰色折线为EfficientDet模型,剩余的四种都是YOLOv5系列的不同网络模型. 其中5s是最小的网络模型,5x是最大的网络模型,而5m与5l则介于两者之间. 相应地,5s的精度小模型…
大家又少了一个用TensorFlow的理由. 在一年一度的开发者大会F8上,Facebook放出PyTorch的1.1版本,直指TensorFlow"腹地". 不仅宣布支持TensorFlow的可视化工具TensorBoard,还正式向工业界迈进,为生产环境改进了PyTorch处理分布式训练的方式. 而且,根据Facebook介绍,开发这一版本的过程中谷歌还帮了不少忙. 科技媒体TechCrunch评论称,虽然版本号只从1.0到1.1的变化,但依旧非常重要. 此外,围绕着打造"…
pytorch常用函数总结(持续更新) torch.max(input,dim) 求取指定维度上的最大值,,返回输入张量给定维度上每行的最大值,并同时返回每个最大值的位置索引.比如: demo.shape Out[7]: torch.Size([10, 3, 10, 10]) torch.max(demo,1)[0].shape Out[8]: torch.Size([10, 10, 10]) torch.max(demo,1)[0]这其中的[0]取得就是返回的最大值,torch.max(dem…
1. Pytorch 论坛/网站 PyTorch 中文网 python优先的深度学习框架 Pytorch中文文档 Pythrch-CN文档地址 PyTorch 基礎篇 2. Pytorch 书籍 深度学习入门之PyTorch 深度学习框架PyTorch:入门与实践 3. Pytorch项目实现 the-incredible-pytorch  Pytorch实现的论文(语言.图像.文本.视频),以及官方tutorials.gan集合等等 实时风格迁移原来这么酷!用PyTorch分分钟搞定   实时…
1. Convolution Layers 1.1 nn.Conv2d (1)原型 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) 在由多个输入平面组成的输入信号上应用2D卷积,简言之就是在多通道输入图像上进行卷积操作. (2)参数…
我们已经了解了如何定义神经网络,计算损失并对网络的权重进行更新. 接下来的问题就是: 一.What about data? 通常处理图像.文本.音频或视频数据时,可以使用标准的python包将数据加载到numpy数组中.然后你可以将这个数组转换成一个torch.Tensor. 对于图片, 涉及到的库有Pillowh和OpenCV. 对于音频,涉及到的库有scipy和librosa 对于文本,无论是原始的Python还是基于Cython的加载,都会用到NLTK或者SpaCy. 我们已经创建了一个名…
我们可以通过torch.nn package构建神经网络. 现在我们已经了解了autograd,nn基于autograd来定义模型并对他们有所区分. 一个 nn.Module模块由如下部分构成:若干层,以及返回output的forward(input)方法. 例如,这张图描述了进行数字图像分类的神经网络: 这是一个简单的前馈( feed-forward)网络,读入input内容,每层接受前一级的输入,并输出到下一级,直到给出outpu结果. 一个经典神经网络的训练程序如下: 1.定义具有可学习参…
1.安装Anaconda 安装步骤参考了官网的说明:https://docs.anaconda.com/anaconda/install/linux.html 具体步骤如下: 首先,在官网下载地址 https://www.anaconda.com/download/下载linux版本,这里选用python 3.6版本的anaconda. 然后, 将下载好的Anaconda3-4.4.0-Linux-x86_64.sh放到/usr/tiny目录下,并进入该目录 在当前目录下用bash命令安装ana…
导读 本文讨论了深层神经网络训练困难的原因以及如何使用Highway Networks去解决深层神经网络训练的困难,并且在pytorch上实现了Highway Networks. 一 .Highway Networks 与 Deep Networks 的关系 深层神经网络相比于浅层神经网络具有更好的效果,在很多方面都已经取得了很好的效果,特别是在图像处理方面已经取得了很大的突破,然而,伴随着深度的增加,深层神经网络存在的问题也就越大,像大家所熟知的梯度消失问题,这也就造成了训练深层神经网络困难的…
[导读]Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二.随后是Caffe.PyTorch和Theano,再次是MXNet.Chainer和CNTK. Keras作者François Chollet刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行: TensorFlow排名第一,这个或许并不出意外,Keras排名第二,随后是Caffe.PyT…
目录 准备工作 设置conda国内镜像源 conda 深度学习环境 tensorflow.mxnet.pytorch安装 tensorflow mxnet pytorch Caffe安装 配置文件修改 编译时常见错误 运行时错误 参考 GPU为RTX2080,系统为更新到最新版本的Win10. 准备工作 安装VS2015,到官网地址older-download下载安装 安装Matlab,笔者安装的是Matlab2017b 安装Anaconda3-4.4.0-Windows-x86_64.exe(…
介绍 不久前Pytorch发布了1.0版本,官网的doc页也更新了.这里说下官网的教程很实用,边学pytorch搭网络边学NLP-图像等领域的先进技术. 官网的教程都是英文的,本人就用这个系列博客做个小小的翻译工作,希望能帮到一些英语苦手(当然也包括双开谷歌翻译的我Orz)的小伙伴学习pytorch. Github仓库 使用 jupyternote book 是一个很好的快速构建代码的选择,本系列教程都能在我的Github仓库找到对应的 jupyter notebook . 下载地址:https…
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 官方推荐的一篇教程 Tensors #Construct a 5x3 matrix, uninitialized: x = torch.empty(5, 3) #Construct a randomly initialized matrix: x = torch.rand(5, 3) # Construct a matrix filled zeros and…
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, Cin,H,W),输出尺度(N,Cout,Hout,Wout)的计算方式: 说明 stride: 控制相关系数的计算步长 dilation:…
1. Embedding的使用 pytorch中实现了Embedding,下面是关于Embedding的使用. torch.nn包下的Embedding,作为训练的一层,随模型训练得到适合的词向量. 建立词向量层 embed = torch.nn.Embedding(n_vocabulary,embedding_size) 找到对应的词向量放进网络:词向量的输入应该是什么样子 实际上,上面通过随机初始化建立了词向量层后,建立了一个"二维表",存储了词典中每个词的词向量.每个mini-b…
""" 利用numpy实现一个两层的全连接网络 网络结构是:input ->(w1) fc_h -> relu ->(w2) output 数据是随机出的 """ import numpy as np #维度和大小参数定义 batch_size = 64 input_dim = 1000 output_dim = 10 hidden_dim = 100 # 数据虚拟 (x,y) # 每行是一条数据 输入是64*1000,1000…
记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # All codes and comments from <<深度学习框架Pytorch入门与实践>> # Code url : https://github.com/zhouzhoujack/pytorch-book # lesson_2 : Neural network of PT(Py…
Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batch数据也等分到不同的设备 最后将所有设备计算得到的梯度合并更新主设备上的模型参数 代码实现(以Minist为例) #!/usr/bin/python3 # coding: utf-8 import torch from torchvision import datasets, transforms…
卷积神经网络的训练是耗时的,很多场合不可能每次都从随机初始化参数开始训练网络.   1.训练 pytorch中自带几种常用的深度学习网络预训练模型,如VGG.ResNet等.往往为了加快学习的进度,在训练的初期我们直接加载pre-train模型中预先训练好的参数,所以这里使用的网络是: torchvision.models.Resnet34(pretrained=True) 然后更改其最后的全连接层.因为resnet网络最后一层分类层fc是对1000种类型进行划分,对于自己的数据集,这里进行的是…
PyTorch常用代码段整理合集 转自:知乎 作者:张皓 众所周知,程序猿在写代码时通常会在网上搜索大量资料,其中大部分是代码段.然而,这项工作常常令人心累身疲,耗费大量时间.所以,今天小编转载了知乎上的一篇文章,介绍了一些常用PyTorch代码段,希望能够为奋战在电脑桌前的众多程序猿们提供帮助! 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collectionsimport osimport shutilimport tqdm import numpy as np…
一.首先需要安装好Anoconda,具体安装步骤可通过https://www.cnblogs.com/chenfeifen/p/10266012.html查看 由于官方下载更新工具包的速度很慢,因此添加清华大学 TUNA提供的Anaconda仓库镜像,可在Anoconda Prompt终端中输入如下命令进行添加: ①.conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ ②.con…
一.PyTorch是什么? 这是一个基于Python的科学计算软件包,针对两组受众: ①.NumPy的替代品,可以使用GPU的强大功能 ②.深入学习研究平台,提供最大的灵活性和速度 二.入门 ①.张量(tensor): 张量与NumPy的ndarray类似,另外还有Tensors也可用于GPU以加速计算: from __future__ import print_function import torch 构造一个未初始化的5x3矩阵: x = torch.empty(5, 3) print(x…
1.close nouveau 终端输入:sudo gedit /etc/modprobe.d/blacklist.conf 末尾加两行 blacklist nouveau options nouveau modeset=0 然后保存 之后运行这行命令 sudo update-initramfs -u 重启,然后运行: lsmod | grep nouveau 结果应该不会显示任何东西 2.Install NVIDIA Driver 查看显卡型号和推荐的显卡驱动(显卡驱动的版本直接就决定了cud…
Pytorch预训练模型以及修改 pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet.densenet.inception.resnet.squeezenet.vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数).往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数.加载model如下所示: import torchvision.models as models 1.加…
这是pytorch官方的一个例子 官方教程地址:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py 代码如下 # coding=utf-8 import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import…
目前在学习pytorch,自己写了一些例子,在这里记录下来一些报错及总结 1. RuntimeError: Expected object of type torch.FloatTensor but found type torch.cuda.FloatTensor for argument #2 'weight' 详细报错信息 Traceback (most recent call last): File , in <module> outputs = net(inputs) File ,…
我这里主要参考了:https://blog.csdn.net/yimingsilence/article/details/79631567 并根据自己在安装中遇到的情况做了一些改动. 先说明一下我的Ubuntu和GPU版本: Ubuntu 16.04 GPU:GEFORCE GTX 1060 1. 查看显卡型号 使用命令:lspci | grep -i nvidia 查看电脑上的显卡,是否是nvidia版本. 2. 安装NVIDIA显卡驱动 具体做法参考之前博客的介绍. 3. 安装cuda 8…
概念:Adam 是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学的 Jimmy Ba 在提交到 2015 年 ICLR 论文(Adam: A Method for Stochastic Optimization)中提出的.该算法名为「Adam」,其并不是首字母缩写,也不是人名.它的名称来源于适应性矩估计(adaptive moment estimation) Adam(A…