Spark常用函数讲解之键值RDD转换】的更多相关文章

摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子:         Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住       了数据集的逻辑操作         Ation(执行):触发Spark作业的运行,真正触发转换算子的计算 本系列主要讲解Spark中常用的函数操作:   …
摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子:         Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住       了数据集的逻辑操作         Ation(执行):触发Spark作业的运行,真正触发转换算子的计算 本系列主要讲解Spark中常用的函数操作:   …
1.mapValus(fun):对[K,V]型数据中的V值map操作(例1):对每个的的年龄加2 object MapValues { def main(args: Array[String]) { val conf = new SparkConf().setMaster("local").setAppName("map") val sc = new SparkContext(conf) val list = List(("mobin",22),…
键值对RDD通常用来进行聚合计算,Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为pair RDD.pair RDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口. Spark中创建pair RDD的方法:存储键值对的数据格式会在读取时直接返回由其键值对数据组成的pair RDD,还可以使用map()函数将一个普通的RDD转为pair RDD. Pair RDD的转化操作 reduceByKey()  与reduce类似 ,接收一个函数,并使用该函数对值进行合并,…
以下是个人理解,一切以官网文档为准. http://spark.apache.org/docs/latest/api/python/pyspark.html 在开始之前,我先介绍一下,RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理.因此,Spark应用程序所做的无非是把需要处理的数据转换为R…
1 简述 Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD. 2 创建PairRDD 2.1 在sprk中,很多存储键值对的数据在读取时直接返回由其键值对数据组成的PairRDD. 2.2 可以调用map()函数,将一个普通的RDD转换为PairRDD. scala 版: 使用第一个单词作为作为键创建出一个PairRDD val pairs = lines.map(x => s.split(" ")(0), x) java版: 同样是使用第一…
源码层面整理下我们常用的操作RDD数据处理与分析的函数,从而能更好的应用于工作中. 连接Hbase,读取hbase的过程,首先代码如下: def tableInitByTime(sc : SparkContext,tableName : String,columns : String,fromdate: Date,todate : Date) : RDD[(ImmutableBytesWritable,Result)] = { val configuration = HBaseConfigura…
1.parallelize       并行集合,切片数.默认为这个程序所分配到的资源的cpu核的个数.       查看大小:rdd.partitions.size      sc.paralielize(1 to 100,2)   2.rdd持久化   persist()    cache()…
1.approxPolyDP(Mat(ps), poly, 5, true);//根据点集,拟合出多边形 2.fillConvexPoly(mask, Mat(ps), Scalar(255));根据点集,绘制并填充出多边形 3.fillPoly(mask, Mat(ps), Scalar(255)); ;根据点集,绘制出多边形…
摘要:   RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集   RDD有两种操作算子:          Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住了数据集的逻辑操作          Ation(执行):触发Spark作业的运行,真正触发转换算子的计算   本系列主要讲解Spark中常用的函数操作:…