deeplearning搜索空间】的更多相关文章

deeplearning搜索空间 搜索空间是神经网络搜索中的一个概念.搜索空间是一系列模型结构的汇集, SANAS主要是利用模拟退火的思想在搜索空间中搜索到一个比较小的模型结构或者一个精度比较高的模型结构. paddleslim.nas 提供的搜索空间 根据初始模型结构构造搜索空间: MobileNetV2Space   MobileNetV2的网络结构 MobileNetV1Space   MobilNetV1的网络结构 ResNetSpace   ResNetSpace的网络结构 根据相应模…
deeplearning算法优化原理目录· 量化原理介绍 · 剪裁原理介绍 · 蒸馏原理介绍 · 轻量级模型结构搜索原理介绍 1. Quantization Aware Training量化介绍1.1 背景近年来,定点量化使用更少的比特数(如8-bit.3-bit.2-bit等)表示神经网络的权重和激活已被验证是有效的.定点量化的优点包括低内存带宽.低功耗.低计算资源占用以及低模型存储需求等. 低精度定点数操作的硬件面积大小及能耗比高精度浮点数要少几个数量级. 使用定点量化可带来4倍的模型压缩.…
deeplearning模型库 1. 图像分类 数据集:ImageNet1000类 1.1  量化 分类模型Lite时延(ms) 设备 模型类型 压缩策略 armv7 Thread 1 armv7 Thread 2 armv7 Thread 4 armv8 Thread 1 armv8 Thread 2 armv8 Thread 4 高通835 MobileNetV1 FP32 baseline 96.1942 53.2058 32.4468 88.4955 47.95 27.5189 高通83…
DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43221829 本文介绍多层感知机算法,特别是详细解读其代码实现,基于Python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介. 经详细注释的代码:放在我的gith…
Softmax回归   1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试输入,我们相拥假设函数针对每一个类别j估算出概率值.也就是说,我们估计得每一种分类结果出现的概率.因此我们的假设函数将要输入一个维的向量来表示这个估计得概率值.假设函数形式如下: 其中是模型的参数.这一项对概率分布进行归一化,舍得所有概率之和为1. softmax回归的代价函数: 上述公式是logi…
google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算. word2vec项目首页:https://code.google.com/p/word2vec/,文档比较详尽,很容易上手.可能对于不同的系统和gcc版本,需要稍微改一下代码和makefile.具体到我的mac系统,源代码中所有#include <malloc.h>的地方都需要…
[z]Deeplearning原文作者Hinton代码注解 跑Hinton最初代码时看到这篇注释文章,很少细心,待研究... 原文地址:>http://www.cnblogs.com/BeDPS/p/3182725.html Matlab示例代码为两部分,分别对应不同的论文: 1. Reducing the Dimensionality of data with neural networks ministdeepauto.m   backprop.m   rbmhidlinear.m 2. A…
用中文把玩Google开源的Deep-Learning项目word2vec   google最近新开放出word2vec项目,该项目使用deep-learning技术将term表示为向量,由此计算term之间的相似度,对term聚类等,该项目也支持phrase的自动识别,以及与term等同的计算. word2vec项目首页:https://code.google.com/p/word2vec/,文档比较详尽,很容易上手.可能对于不同的系统和gcc版本,需要稍微改一下代码和makefile.具体到…
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述. 1.神经网络概要 注意:这一系列的课程中用中括号表示层数,例如\(a^{[1]}\)表示第二层(隐藏层)的数据. 2.神经网络表示 这个图的内容有点多,跟着下面的步骤来理解这个图吧: 首先看蓝色字体,这个2层的神经网络(输入层一般理解成第0层)有输入层…
第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络 第二章 改善深层神经网络 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以及优化--Week1深度学习的实用层面 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以…
因为是Jupyter Notebook的形式,所以不方便在博客中展示,具体可在我的github上查看. 第一章 Neural Network & DeepLearning week2 Logistic Regression with a Neural Network mindset v3.ipynb 很多朋友反映找不到h5文件,我已经上传了,具体请戳h5文件 week3 Planar data classification with one hidden layer v3.ipynb week4…
一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫分类器为例,假设我们的模型表现的还不错,但是依旧存在误差,预测后错误标记的数据中有一部分狗图片被错误的标记成了猫.这个时候按照一般的思路可能是想通过训练出狗分类器模型来提高猫分类器,或者其他的办法,反正就是要让分类器更好地区分狗和猫. 但是现在的问题是,假如错误分类的100个样本中,只有5个狗样本被…
既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有点贵,所以能听到哪儿算哪儿吧... Week one主要讲了近年来为啥Deep learning火起来了,有时间另起一贴总结一下. Week two回顾了Logistic Regression(逻辑回归).虽然它听上去已经不是一个陌生的概念了,但是每次想起时还是会迟疑一下,所以干脆记录一发备忘. 1. 逻辑回…
从接触机器学习就了解到Andrew Ng的机器学习课程,后来发现又出来深度学习课程,就开始在网易云课堂上学习deeplearning.ai的课程,Andrew 的课真是的把深入浅出.当然学习这些课程还是要有一些基础的.线性代数,高等数学的一些知识. Andrew NG: Deep Learning.ai 网易云课堂(中文字幕) 推荐理由: Andrew Ng老师是讲课的能手,很多人认识他是从Stanford的经典<机器学习>课程上.Andrew老师授课思路清晰,简洁明了. 这是一份优美的信息图…
日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Week 5: Neural Networks: Learning 本来上周开始该学习这个内容,也是先提交了作业,今天才来看看具体的代码:感觉这个课程本身对基础巩固很好.没有连续学习感觉有些有点忘了,最终的目的是自己能够推导这个内容. 本来想跟着学习搞个电子证书的,结果申请的到期时间是2017.3.31;…
在计算机时代的早期,一名极客的满足感很大程度上来源于能DIY一台机器.到了深度学习的时代,前面那句话仍然是对的. 缘起在2013年,MIT科技评论将深度学习列为当年十大科技突破之首.其原因在于,模型有其为庞大的网络结构,参数够多,学习能力够强,能配合大数据达到惊人的效果.而且,能自动学习特征,避免了“特征工程”这种繁琐的手工劳动.对于图像.音频和文字处理领域有极大的意义.因为最近在尝试用深度学习做文本挖掘,所以需要一台深度学习服务器(相信我,如果用CPU来跑,你的人生显得好短). 那么就有三个选…
Theano – CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal) Torch – provides a Matlab-like environment for state-of-the-art machine learning algorithms in lua (from Ronan Collobert, Clement Farabet and Koray Kavu…
WHAT I READ FOR DEEP-LEARNING Today, I spent some time on two new papers proposing a new way of training very deep neural networks (Highway-Networks) and a new activation function for Auto-Encoders (ZERO-BIAS AUTOENCODERS AND THE BENEFITS OFCO-ADAPTI…
一.RNN基本结构 普通神经网络不能处理时间序列的信息,只能割裂的单个处理,同时普通神经网络如果用来处理文本信息的话,参数数目将是非常庞大,因为如果采用one-hot表示词的话,维度非常大. RNN可以解决这两个问题: 1)RNN属于循环神经网络,当从左到右读取文本信息的时候,上一时刻的状态输出可以传递到下一时刻,例如上图的a表示状态,a(1)向下传递,这样就考虑了前面的信息,如果是双向RNN的话,上下文都考虑进去了. 2)RNN参数是共享的.为方便理解,上述图示是展开的RNN结构,其实RNN只…
Finally pass all the Deeplearning.ai courses in March! I highly recommend it! If you already know the basic then you may be interested in course 4 & 5, which shows many interesting cases in CNN and RNN. Although I do think that 1 & 2 is better str…
I have finished the first course in the DeepLearnin.ai series. The assignment is relatively easy, but it indeed provides many interesting insight. You can find some summary notes of the first course in my previous 2 posts. sigmoid and shallow NN Forw…
A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight Storage Using Non-Uniform Memory Hierarchy for Mobile Intelligence 单位:Michigan,CubeWorks(密歇根大学,CubeWorks公司) 又是一款做DNN加速的面向IOT的专用芯片,主要特点是有L1~L4四级不同速度.能耗的层次化存储.通过对全连接矩阵x向量的计算流程优化,最终可…
Contents LICENSE Deep Learning Tutorials Getting Started Download Datasets Notation A Primer on Supervised Optimization for Deep Learning Theano/Python Tips Classifying MNIST digits using Logistic Regression The Model Defining a Loss Function Creatin…
1 sotfmax 函数: stanford UFLDL: http://deeplearning.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 softmax 损失函数 求导: https://blog.csdn.net/qian99/article/details/78046329 2 feedforward neural networks backpropagation algorithm: https://www.cnblog…
Deeplearning 概念 Deep Learning:   观点: 认为AI是最新的电力,大约在一百年前,我们社会的电气化改变了每个主要行业,从交通运输行业到制造业.医疗保健.通讯等方面,我认为如今我们见到了AI明显的令人惊讶的能量,带来了同样巨大的转变. 神经网络 什么是神经网络? 我的理解:给定原始输入数据,按照特定的计算规则传递给神经元,后续经过相应的计算规则继续传递给下一层神经元,当到达最后一层时,得到的神经元中存储的数据即为需要输出的数据. 简单描述: 尝试输入一个x,即可把它映…
This is a series of Machine Learning summary note. I will combine the deep learning book with the deeplearning open course . Any feedback is welcomed! First let's go through some basic NN concept using Bernoulli classification problem as an example.…
In the previous post I go through basic 1-layer Neural Network with sigmoid activation function, including How to get sigmoid function from a binary classification problem? NN is still an optimization problem, so what's the target to optimize? - cost…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 Logistic Regression as a Neutral Network 2.1.1 Binary Classification 二分类 逻辑回归是一个用于二分类(binary classification)的算法.首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
在上吴恩达老师的深度学习课程,在coursera上. 我觉得课程绝对值的49刀,但是确实没有额外的钱来上课.而且课程提供了旁听和助学金. 之前在coursera上算法和机器学习都是直接旁听的,这些课旁听和注册没有任何区别.这回deeplearning.ai系列的课程,旁听无法提交作业,无法做程序作业. 去写了申请,希望申请助学金.助学金结果需要15天,我有等不及了,就先旁听了课程. 发现,其实旁听也是可以做程序作业的. 最开始看到这里上锁的课程作业,你可能认为无法看到作业,实际上,你只需要点开第…