lecture5-对象识别与卷积神经网络】的更多相关文章

Hinton第五课 突然不知道object recognition 该翻译成对象识别好,还是目标识别好,还是物体识别好,但是鉴于范围性,还是翻译成对象识别吧.这一课附带了两个论文<Convolutional Networks for Images,Speech,and Time-series>在前面翻译过:http://blog.csdn.net/shouhuxianjian/article/details/40832953和<Gradient-based learning applie…
一.卷积神经网络的简述 卷积神经网络将一个图像变窄变长.原本[长和宽较大,高较小]变成[长和宽较小,高增加] 卷积过程需要用到卷积核[二维的滑动窗口][过滤器],每个卷积核由n*m(长*宽)个小格组成,每个小格都有自己的权重值, 长宽变窄:过滤器的长宽决定的 高度变高:过滤器的个数决定的 输入:55000 × 784 = 28*28 输出:55000 × 10 lenet:两层卷积层(卷积层 + 池化层).两层全连接层 二.代码: 1.数据集: 下载好Mnist数据集加压到文件夹'MNIST_d…
一.AlexNet:共8层:5个卷积层(卷积+池化).3个全连接层,输出到softmax层,产生分类. 论文中lrn层推荐的参数:depth_radius = 4,bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75 lrn现在仅在AlexNet中使用,主要是别的卷积神经网络模型效果不明显.而LRN在AlexNet中会让前向和后向速度下降,(下降1/3). [训练时耗时是预测的3倍] 代码: #加载数据 import tensorflow as tf fr…
#自动下载并加载数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) import tensorflow as tf # truncated_normal: https://www.cnblogs.com/superxuezhazha/p/9522036.html def weight_var…
代码 import torch from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim from torchvision import transforms #从torchvision中引入图像转换 #采用随机批量梯度下降,batch_size设为64 batch_size = 64 #用…
​NOTES:现如今,芯片行业无比火热啊,无论是前景还是钱景,国家芯片战略的发布,公司四五十万的年薪,着实令人非常的向往,为了支持芯片设计者,集成了工作.科研.竞赛于一体的<基于 SoC 的卷积神经网络车牌识别系统设计>专栏项目,这是在一位海归教授的带领之下的整个团队辛勤耕耘的结晶,希望大家能够在理论结合实践的指导之下,不断地提高自己的数字芯片设计技术能力. 1.项目引言 工作求职:能够在简历上添加一笔较大的项目,集成了 AI.SoC.系统级.FPGA.ARM 以及 Verilog.C.Pyt…
本文是对卷积神经网络的基础进行介绍,主要内容包含卷积神经网络概念.卷积神经网络结构.卷积神经网络求解.卷积神经网络LeNet-5结构分析.卷积神经网络注意事项. 一.卷积神经网络概念 上世纪60年代.Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念.到80年代.Fukushima在感受野概念的基础之上提出了神经认知机的概念,能够看作是卷积神经网络的第一个实现网络,神经认知机将一个视觉模式分解成很多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其…
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我们这次使用CNN卷积神经网络来进行识别. 卷积神经网络我的理解是部分模仿了人眼的功能. 我们在看一个图像时不是一个像素点一个像素点去分辨的,我们的眼睛天然地具有大局观,我们看到某个图像时自动地会把其中的细节部分给聚合起来进行识别,相反,如果我们用个放大镜看到其中的各个像素点时反而不知道这是啥东西了.…
1.LeNet LeNet是指LeNet-5,它是第一个成功应用于数字识别的卷积神经网络.在MNIST数据集上,可以达到99.2%的准确率.LeNet-5模型总共有7层,包括两个卷积层,两个池化层,两个全连接层和一个输出层. import torch import torch.nn as nn from torch.autograd import Variable #方形卷积核和等长的步长 m1=nn.Conv2d(16,33,3,stride=2) #非长方形卷积核,非等长的步长和边界填充 m…
LeNet-5是Yann LeCun在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一.可以说,LeNet-5就相当于编程语言入门中的"Hello world!". 但是很奇怪的,原本设计之初的目的是用来识别手写体数字的,但是作者在论文中的插图却是用的字母来表示的,因此很容易误导新手.于是,笔者完全按照原图的样式,重置了该模型的结构图. 原作者插图 重制后的插图 本次重置的插图可在网页中…
摘要:LeNet-5是Yann LeCun在1998年设计的用于手写数字识别的卷积神经网络,当年美国大多数银行就是用它来识别支票上面的手写数字的,它是早期卷积神经网络中最有代表性的实验系统之一.可以说,LeNet-5就相当于编程语言入门中的“Hello world!”. 华为的昇腾训练芯片一直是大家所期待的,目前已经开始提供公测,如何在昇腾训练芯片上运行一个训练任务,这是目前很多人都在采坑过程中,所以我写了一篇指导文章,附带上所有相关源代码.注意,本文并没有包含环境的安装,请查看另外相关文档.…
验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制作 2.卷积神经网络结构 3.训练参数保存与使用 4.注意事项 5.代码实现(python3.5) 6.运行结果以及分析 1.验证码的制作 深度学习一个必要的前提就是需要大量的训练样本数据,毫不夸张的说,训练样本数据的多少直接决定模型的预测准确度.而本节的训练样本数据(验证码:字母和数字组成)通过调…
一.介绍 实验内容 内容包括用 PyTorch 来实现一个卷积神经网络,从而实现手写数字识别任务. 除此之外,还对卷积神经网络的卷积核.特征图等进行了分析,引出了过滤器的概念,并简单示了卷积神经网络的工作原理. 知识点 使用 PyTorch 数据集三件套的方法 卷积神经网络的搭建与训练 可视化卷积核.特征图的方法 二.数据准备 引入相关包 import torch import torch.nn as nn from torch.autograd import Variable import t…
这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前,我们先来看看怎样使用 Python 处理图片.Python 处理图片最主要使用的类库是 Pillow (Python2 PIL 的 fork),使用以下命令即可安装: pip3 install Pillow 一些简单操作的例子如下,如果你想了解更多可以参考 Pillow 的文档: # 打开图片 >>…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNIST手写数字库对CNN(卷积神经网络)进行训练,准确度达到98%以上时,再准备独家手写数字10个.画图软件编辑的数字10个共计20个,让训练好的CNN进行识别,考察其识别准确度. 调试代码: 坑1:ModuleNotFoundError: No module named 'google' 解决:pi…
一.什么是人脸识别 老实说这一节中的人脸识别技术的演示的确很牛bi,但是演技好尴尬,233333 啥是人脸识别就不用介绍了,下面笔记会介绍如何实现人脸识别. 二.One-shot(一次)学习 假设我们发财了,开了一家公司.然后作为老板的我们希望与时俱进,所以想使用人脸识别技术来实现打卡. 假如我们公司只有4个员工,按照之前的思路我们训练的神经网络模型应该如下: 如图示,输入一张图像,经过CNN,最后再通过Softmax输出5个可能值的大小(4个员工中的一个,或者都不是,所以一一共5种可能性).…
基于卷积神经网络(CNN)的人脸在线识别系统 本设计研究人脸识别技术,基于卷积神经网络构建了一套人脸在线检测识别系统,系统将由以下几个部分构成: 制作人脸数据集.CNN神经网络模型训练.人脸检测.人脸识别.经过实验,确定该系统可对本人的人脸进行快速并准确的检测与识别. 关键词: 神经网络: 图像处理: 人脸检测:人脸识别:TensorFlow:模型训练 一.设计目标 1.掌握人脸识别原理: 2.掌握卷积神经网络算法原理 3.掌握卷积神经网络模型训练过程: 4.掌握常用图像处理技术: 设计内容与要…
卷积神经网络的结构我随意设了一个. 结构大概是下面这个样子: 代码如下: import numpy as np from keras.preprocessing import image from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Activation from keras.layers import Conv2D, MaxPooling2D # 从文件夹图像与标签文件…
人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门 上篇博文我们准备好了2000张训练数据,接下来的几节我们将详细讲述如何利用这些数据训练我们的识别模型.前面说过,原博文给出的训练程序使用的是keras库,对我的机器来说就是tensorflow版的keras.训练程序建立了一个包含4个卷积层的神经网络(CNN),程序利用这个网络训练我的人脸识别模型,并将最终训练结果保存到硬盘上.在我们实际动手操练之前我们必须先弄明白一个问题——什么是卷积神经网络(CNN)? CNN(Conv…
4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.1什么是人脸识别 Face verification人脸验证 VS face recognition人脸识别 Face verification人脸验证 人脸验证 输入是一张图片,以及人的姓名或者ID作为标签 输出是这张输入的图片是否是这个确定的人 这时候也被称为1对1问题 人脸识别 人脸识别问题比人脸验证问题困难的多,其输入为一个具有K个人的数据集,将一张图片作为输入,如果这张图片是这K个人…
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性,以下面这个一维的卷积为例子: 第一个特性是稀疏连接.可以看到, layer m 上的每一个节点都只与 layer m-1 对应区域的三个节点相连接.这个局部范围也叫感受野.第二个特性是相同颜色的线条代表了相同的权重,即权重共享.这样做有什么好处呢?一方面权重共享可以极大减小参数的数目,学习起来更加有…
神经网络和深度学习目前为处理图像识别的许多问题提供了最佳解决方案,而基于MTCNN(多任务级联卷积神经网络)的人脸检测算法也解决了传统算法对环境要求高.人脸要求高.检测耗时高的弊端. 基于MTCNN多任务级联卷积神经网络进行的人脸识别—— MTCNN主要包括三个部分,PNet,RNet,ONet 测试阶段大概过程 首先图像经过金字塔,生成多个尺度的图像,然后输入PNet. PNet由于尺寸很小,所以可以很快的选出候选区域,但是准确率不高,然后采用NMS算法,合并候选框,然后根据候选框提取图像.…
本项目使用卷积神经网络识别字符型图片验证码,其基于 TensorFlow 框架.它封装了非常通用的校验.训练.验证.识别和调用 API,极大地减低了识别字符型验证码花费的时间和精力. 项目地址: https://github.com/nickliqian/cnn_captcha 操作系统: Ubuntu 16.04.3 LTS 环境部署遇到的问题: apt install python3-pip 遇到如下报错: Unable to fetch some archives, maybe run a…
一.前言 计算机视觉长久以来没有大的突破,卷积神经网络的出现,给这一领域带来了突破,本篇博客,将通过具体的实例来看看卷积神经网络在图像识别上的应用. 导读 1.问题描述 2.解决问题的思路 3.用DL4J进行实现 二.问题 有如下一组验证码的图片,图片大小为60*160,验证码由5个数字组成,数字的范围为0到9,并且每个验证码图片上都加上了干扰背景,图片的文件名,表示验证码上的数字,样本图片如下: 穷举每张图片的可能性几乎不可能,所以传统的程序思路不可能解这个问题,那么必须让计算机通过自我学习,…
论文标题:基于 3D 卷积神经网络的行为识别算法研究 来源/作者机构情况: 中  国  地  质  大  学(北京),计算机学院,图像处理方向 解决问题/主要思想贡献: 1. 使用张量CP分解的原理,把3D的filter变成了三个方向的1D卷积核 2.提出了三种方式的卷积 成果/优点: 运行速度大大提升 缺点: 反思改进/灵感: ############################################################# 论文主要内容与关键点: 1. 2. 3. 4…
这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容. 程序的开头是导入TensorFlow: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data 接下来载入MNIST数据集,并建立占位符.占位符x的含义为训练图像,y_为对应训练图像的标签. # 读入数据 mnist = input_dat…
卷积神经网络目前被广泛地用在图片识别上, 已经有层出不穷的应用, 如果你对卷积神经网络充满好奇心,这里为你带来pytorch实现cnn一些入门的教程代码 #首先导入包 import torchfrom torch.autograd import Variableimport torch.nn as nnimport torchvisionimport torch.utils.data as Data #一.数据准备 #训练数据:用了torchvision.datasets.MNIST,root是…
https://www.cnblogs.com/31415926535x/p/11001669.html 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn 概述 学期末了啊,,,最后这个人脸识别的项目弄完了,,有很多的不足,,很多东西都是只知道怎么用,但是不知道其背后的逻辑,,感觉自己学习东西对于那些潜意识优先级不高的就放弃了,,,emmm 这篇文章主要是大致介绍一下我们最后弄出来的人脸识别项目的成果吧,,整个项目放到了我的github,,可以直接下载…
一.项目说明 给定数据集train.csv,要求使用卷积神经网络CNN,根据每个样本的面部图片判断出其表情.在本项目中,表情共分7类,分别为:(0)生气,(1)厌恶,(2)恐惧,(3)高兴,(4)难过,(5)惊讶和(6)中立(即面无表情,无法归为前六类).所以,本项目实质上是一个7分类问题. 数据集介绍: (1).CSV文件,大小为28710行X2305列: (2).在28710行中,其中第一行为描述信息,即“label”和“feature”两个单词,其余每行内含有一个样本信息,即共有28709…