什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树是{cf, fa, ab} 3条边 Kruskal算法 用到上一篇中介绍的不相交集合(并查集) 首先,定义V是端点的集合,E是边的集合,A为要求的最小生成树集合 初始A为空集合,每个端点都作为单独的不相交集合 将所有边根据其权重进行排序 对每条边(v1, v2),如果其两个端点数据不同的不相交集,则…
//归并排序递归方法实现 #include <iostream> #include <cstdio> using namespace std; #define maxn 1000005 int a[maxn], temp[maxn]; long long ans; void MergeSort(int a[], int l, int mid, int r) { ; int i = l, n = mid, j = mid, m = r; while ( i<n &&am…
最小生成树,普利姆算法. 简述算法: 先初始化一棵只有一个顶点的树,以这一顶点开始,找到它的最小权值,将这条边上的令一个顶点添加到树中 再从这棵树中的所有顶点中找到一个最小权值(而且权值的另一顶点不属于这棵树) 重复上一步.直到所有顶点并入树中. 图示: 注:以a点开始,最小权值为1,另一顶点是c,将c加入到最小生成树中.树中 a-c 在最小生成树中的顶点找到一个权值最小且另一顶点不在树中的,最小权值是4,另一个顶点是f,将f并入树中, a-c-f 重复上一步骤,a-c-f-d, a-c-f-d…
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法.给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小的. 本节中介绍三种算法求解图的最小生成树:Prim算法.Kruskal算法和Boruvk…
最小生成树prim算法实现 所谓生成树,就是n个点之间连成n-1条边的图形.而最小生成树,就是权值(两点间直线的值)之和的最小值. 首先,要用二维数组记录点和权值.如上图所示无向图: int map[7][7];        map[1][2]=map[2][1]=4;        map[1][3]=map[3][1]=2;        ...... 然后再求最小生成树.具体方法是: 1.先选取一个点作起始点,然后选择它邻近的权值最小的点(如果有多个与其相连的相同最小权值的点,随便选取一…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 题意:给出任意两个城市之间建一条路的时间,给出哪些城市之间已经建好,问最少还要多少时间使所有的城市连通? 思路:已经建好的城市之间需要的时间设为0,就是求最小生成树的权值和了. 顺便复习一下prim算法. 讲道理,好像我的prim算法没有判断加入这个点是不是会产生回路? 回答:只有生成树集合里的点加入超过1次的时候,它还是要和集合里的某个点连一条边,于是就产生回路了.所以代码通过vis数组判断…
Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输出需要添加边的两端点编号即可. 解题思路 这个可以使用最短路里面的Prim算法来实现,对于已经连接的城市,处理方式是令这两个城市之间的距离等于0即可. prim算法可以实现我们具体的路径输出,Kruskal算法暂时还不大会. 代码实现 #include<cstdio> #include<cs…
求最小生成树(Prim算法) 我对提示代码做了简要分析,提示代码大致写了以下几个内容 给了几个基础的工具,邻接表记录图的一个的结构体,记录Prim算法中最近的边的结构体,记录目标边的结构体(始末点,值). 初始化记录了图,规定了从0号节点开始构建. 给了这么多东西,不能不用,对吧,下面就是题目以及算法 1000(ms) 10000(kb) 2490 / 4945 Tags: 生成树 求出给定无向带权图的最小生成树.图的定点为字符型,权值为不超过100的整形.在提示中已经给出了部分代码,你只需要完…
最小生成树\(Prim\)算法 我们通常求最小生成树有两种常见的算法--\(Prim\)和\(Kruskal\)算法,今天先总结最小生成树概念和比较简单的\(Prim\)算法 Part 1:最小生成树基础理论 定义 一个有 \(n\) 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 \(n\) 个结点,并且有保持图连通的最少的边. --来自百度百科 我们用比较通俗的语言来讲:(百度百科的解释实在是太鬼了,我这个明白人都看着迷糊) 给定一张包含\(n\)个点\(m\)条边的连通带权…
最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析 最小生成树,老生常谈了,生活中也总会有各种各样的问题,在这里,我来带你一起分析一下这个算法的思路与实现的方式吧~~ 在考研中呢,最小生成树虽然是只考我们分析,理解就行,但我们还是要知道底层是怎么实现的,话不多说,进入正题~~ 什么是生成树?什么是最小生成树 总所周知,对于一个无向连通图,我们想把他看成一个树的话,那么就不能太乱,也就引出了,如果对于一个生成树(不唯一,满足条件即可),如果砍去它的一条边,则会变成非连通图,如…
原文:算法起步之Prim算法 prim算法是另一种最小生成树算法.他的安全边选择策略跟kruskal略微不同,这点我们可以通过一张图先来了解一下. prim算法的安全边是从与当前生成树相连接的边中选择一条最短的一条,并且该边是应是生成树与生成树外一点的连接. 所以我们prim算法用汉字描述的过程应为:1初始化2构造最小优先队列,将所有节点都加入到最小优先队列中,所有节点的key设置为无穷大,开始节点设置成0.3循环,直到队列为空{取出key值最小的节点加入到生成树中,变量与key相连接的边,看是…
原文:一步一步写算法(之prim算法 下) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 前两篇博客我们讨论了prim最小生成树的算法,熟悉了基本的流程.基本上来说,我们是按照自上而下的顺序来编写代码的.首先我们搭建一个架构,然后一步一步完成其中的每一个子功能,这样最后构成一个完成prim算法计算过程.  f)将DIR_LINE队列中不符合的数据删除,主要是双节点都已经访问过的DIR_LINE数据. void delete_unvali…
原文:一步一步写算法(之prim算法 中) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] C)编写最小生成树,涉及创建.挑选和添加过程 MINI_GENERATE_TREE* get_mini_tree_from_graph(GRAPH* pGraph) { MINI_GENERATE_TREE* pMiniTree; DIR_LINE pDirLine; if(NULL == pGraph || NULL == pGraph->hea…
原文:一步一步写算法(之prim算法 上) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 前面我们讨论了图的创建.添加.删除和保存等问题.今天我们将继续讨论图的一些其他问题,比如说如何在图的环境下构建最小生成树.为什么要构建最小生成树呢?其实原理很简单.打个比方,现在某一个乡镇有n个村,那么这n个村肯定是联通的.现在我们打算在各个村之间搭建网线,实现村村通的工程.那么有什么办法可以实现村村互通,同时又使得最后的总距离最小呢?要达到这个目…
wide&deep在个性化排序算法中是影响力比较大的工作了.wide部分是手动特征交叉(负责memorization),deep部分利用mlp来实现高阶特征交叉(负责generalization),wide部分和deep部分joint train. Deep&Cross Network模型我们下面将简称DCN模型,对比Wide & Deep ,不需要特征工程来获得高阶的交叉特征.对比 FM 系列的模型,DCN 拥有更高的计算效率并且能够提取到更高阶的交叉特征. 一个DCN模型从嵌入…
FM通过对于每一位特征的隐变量内积来提取特征组合,最后的结果也不错,虽然理论上FM可以对高阶特征组合进行建模,但实际上因为计算复杂度原因,一般都只用到了二阶特征组合.对于高阶特征组合来说,我们很自然想到多层神经网络DNN. DeepFM目的是同时学习低阶和高阶的特征交叉,主要由FM和DNN两部分组成,底部共享同样的输入.模型可以表示为: \[ \hat{y} = sigmoid(y_{FM}+y_{DNN}) \]…
前一篇介绍了一种最小生成树的算法--Kruskal算法,本篇介绍另一种Prim算法 算法描述 定义V为端点的集合,A为最小生成树,初始为空.对于每个端点v初始的Key[v]=∞, Parent[v]=null 初始化Q为V, 指定任意一个端点为root,其值Key[r]=0 while(Q不为空) { 找出Q中Key值最小的u Q = Q - u if (PARENT[u] != null) { 将(u, Parent(u))加入A中 } foreach(u的相邻端点v) { if (v在Q中且…
prim算法是选取任意一个顶点作为树的一个节点,然后贪心的选取离这棵树最近的点,直到连上所有的点并且不够成环,它的时间复杂度为o(v^2) #include<iostream>#include<algorithm>#define INF 10000000using namespace std;int v,e;int cost[1000][1000];int mincost[1000];bool used[1000];//判断一个点是否已经在最小生成树中了int ans=0; voi…
定义:设G=(V,E)是一个无向连通图.如果G的生成子图T=(V,E’)是一棵树,则称T是G的一棵生成树(Spanning Tree). 应用生成树可以得到关于一个电网的一组独立的回路方程.第一步是要得到这个电网的一棵生成树.设B是那些不在生成树中的电网的边的集合,从B中取出一条边添加到这生成树上就生成一个环.从B中取出不同的边就生成不同的环.把克希霍夫(Kirchoff)第二定律用到每一个环上,就得到一个回路方程.用这种方法所得到的环是独立的(即这些环中没有一个可以用那些剩下的环的线性组合来得…
Description 求出给定无向带权图的最小生成树.图的定点为字符型,权值为不超过100的整形.在提示中已经给出了部分代码,你只需要完善Prim算法即可. Input 第一行为图的顶点个数n      第二行为图的边的条数e      接着e行为依附于一条边的两个顶点和边上的权值 Output 最小生成树中的边. Sample Input ABCDEF A B 6 A C 1 A D 5 B C 5 C D 5 B E 3 E C 6 C F 4 F D 2 E F 6   Sample O…
最小生成树:Prim算法 最小生成树 给定一无向带权图.顶点数是n,要使图连通仅仅需n-1条边.若这n-1条边的权值和最小,则称有这n个顶点和n-1条边构成了图的最小生成树(minimum-cost spanning tree). Prim算法 Prim算法是解决最小生成树的经常使用算法. 它採取贪心策略,从指定的顶点開始寻找最小权值的邻接点.图G=<V,E>.初始时S={V0}.把与V0相邻接.且边的权值最小的顶点增加到S. 不断地把S中的顶点与V-S中顶点的最小权值边增加,直到全部顶点都已…
文章作者:甘航  文章来源:http://www.cnblogs.com/ganhang-acm/转载请注明,谢谢合作. 由于数据结构老师布置的一道题 ,我看prim算法看了半天还是一知半解. 在浏览过n多大神博客后半copy半自动补脑完成了这道渣渣题... 题目就是从老师给的两个文件中读取数据求最小生成树. 第一个城市文件 北京 , 上海 , 天津 , 石家庄 , 太原 , 呼和浩特 , 沈阳 , 长春 ,哈尔滨 , 济南 , 南京 , 合肥 , 杭州 , 南昌 , 福州 , 台北 , 郑州…
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gray; border-width: 2px 0 2px 0;} th{border: 1px solid gray; padding: 4px; background-color: #DDD;} td{border: 1px solid gray; padding: 4px;} tr:nth-chil…
生成树(spanning tree):无向联通图的某个子图中,任意两个顶点互相都联通并且形成了一棵树,那么这棵树就叫做生成树. 最小生成树(MST,minimum spanning tree):如果为有权图的生成树,使得边权和最小的生成树就叫做最小生成树. 从生成树的定义中可以看出,为房子设计电路或者为村庄修建道路这类问题都可以转换为最小生成树问题. 常见的求解算法有Prim算法和Kruskal算法. Prim算法: Prim算法和Dijkstra算法很相似,都是一种从某个顶点出发不断添加边的算…
一.最小生成树(MST) ①.生成树的代价:设G=(V,E)是一个无向连通网,生成树上各边的权值之和称为该生成树的代价. ②.最小生成树:在图G所有生成树中,代价最小的生成树称为最小生成树. 最小生成树的概念可以应用到许多实际问题中. 例:在n个城市之间建造通信网络,至少要架设n-1条通信线路,而每两个城市之间架设通信线路的造价是不一样的,那么如何设计才能使得总造价最小? ③.MST性质:假设G=(V, E)是一个无向连通网,U是顶点集V的一个非空子集.若(u, v)是一条具有最小权值的边,其中…
通过最小生成树(prim)和最短路径优化引出的向前星存图,时至今日才彻底明白了.. head[i]存储的是父节点为i引出的最后一条边的编号, next负责把head[i]也就是i作为父节点的所有边连接起来,next也是存的编号, 在所存的edge结构体中,只有w是保存边的值,而u是保存的子节点. 这样设置的话,由head[i]就可以引出所有与i相关的边和点, 显而易见,这样的存放方法空间+时间复杂度双优化,比邻接矩阵是优化多了.. 然后就是prim算法, 最小生成树的一种算法,适用于稠密图,因为…
普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树算法 基本思想:对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边. 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 代码实现 1. 思想逻辑 (1)以无向图的…
Prim算法采用与Dijkstra.Bellamn-Ford算法一样的“蓝白点”思想:白点代表已经进入最小生成树的点,蓝点代表未进入最小生成树的点. 算法分析 & 思想讲解: Prim算法每次都将一个蓝点 U 变成白点,并且此蓝点 U 与白点相连的最小边权还是当前所有蓝点中最小的.这样就相当于向生成树中添加了n-1次最小的边,最后得到的一定是最小生成树. 我们通过对下图最小生成树的求解模拟来理解上面的思想.蓝点和虚线代表未进入最小生成树的点.边:白点和实线代表已进入最小生成树的点.边. #inc…
最小生成树定义 最小生成树是一副连通加权无向图中一棵权值最小的生成树. 在一给定的无向图 G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即,而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得的 w(T) 最小,则此 T 为 G 的最小生成树. 最小生成树其实是最小权重生成树的简称. 一个连通图可能有多个生成树.当图中的边具有权值时,总会有一个生成树的边的权值之和小于或者等于其它生成树的边的权值之和.广义上而言,对于非连通无向图来说…
Prim算法 Prim算法求最小生成树是采取蓝白点的思想,白点代表已经加入最小生成树的点,蓝点表示未加入最小生成树的点. 进行n次循环,每次循环把一个蓝点变为白点,该蓝点应该是与白点相连的最小边权的是当前蓝点中最小的.这样就相当于向生成树中添加了n-1次最小的边,最后得到的一定是最小生成树. #include<cstdio> #include<cstring> #define N 42000 using namespace std; int next[N],to[N],dis[N]…