L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE) L2范数损失函数,也被称为最小平方误差(LSE) L2损失函数 L1损失函数 不是非常的鲁棒(robust) 鲁棒 稳定解 不稳定解 总是一个解 可能多个解 鲁棒性 最小绝对值偏差之所以是鲁棒的,是因为它能处理数据中的异常值.如果需要考虑任一或全部的异常值,那么最小绝对值偏差是更好的选择. L2范数将误差平方化(如果误差大于1,则误差会放大很多),模型的误差会比L1范数来得大,因此模型会对这个样本更加敏感,这就需要调整…