欧拉函数 &【POJ 2478】欧拉筛法】的更多相关文章

http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很大,所以结果数据类型不要用int,改为long long就没问题了 #include <iostream> #include <stdio.h> using namespace std; #define LL long long LL F[]; ]; void phi_table(in…
前两天总结了素数筛法,其中就有Eular筛法.现在他又来了→→ φ(n),一般被称为欧拉函数.其定义为:小于n的正整数中与n互质的数的个数. 毕竟是伟大的数学家,所以以他名字命名的东西很多辣. 对于φ(n),我们有这样[三个性质]: (1) [若n为素数],则φ(n) = n - 1 显然,由于n为素数,1~n-1与n都只有公因子1,因此φ(n) = n - 1. 比如φ(11)=10={1,2,3,4,5,6,7,8,9,10}; (2) [若n = p^k],p为素数(即n为单个素数的整数幂…
/* 给定n,对于所有的对(i,j),i<j,求出sum{gcd(i,j)} 有递推式sum[n]=sum[n-1]+f[n] 其中f[n]=gcd(1,n)+gcd(2,n)+gcd(3,n)...... 那么如何求出f[n], 设满足gcd(i,n)=x的组合有g(x,n)个,那么f[n]=sum{x*g(x,n)} 对于gcd(i,n)=x,即有gcd(i/x,n/x)=1,因为将n/x看做是固定的数,那么g(x,n)=phi[n/x] 求答案时直接先求出所有答案,因为枚举n的每个因子比较…
和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) \),然后很显然对于mu\( g(n)=1\),对于\( g(n)=n*(n+1)/2 \),然后可以这样转化一下: \[ g(n)=\sum_{i=1}^{n}\sum_{d|n}\phi(d) \] \[ =\sum_{d=1}^{n}\phi(d)\left \lfloor \frac{n}…
欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; int Euler(int n) { int res=n; ;i*i<=n;i++) { ) { n/=i; res-=(res/i); ) n/=i; } }…
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中1<=i <j <n. 要是求gcd(n , x) = y的个数的话,那么就是求gcd(n/y , x/y) = 1的个数,也就是求n/y的欧拉函数.这里先预处理出欧拉函数,然后通过类似筛法的技巧筛选出答案累加起来. #include <iostream> #include &l…
题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2,n)+gcd(3,n)+…………gcd(n-1,n)+gcd(n,n),(1<=n<2^31)是多少? 放心吧!!!暴力肯定是做不出来的,如果你数论只会gcd(和我一样),那还是学点东西再来挑战这个题吧!    这个题需要用到欧拉函数的知识…… 欧拉函数的定义:对正整数n,欧拉函数是小于n的正整数…
题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1). 设f(n)为 集合S{(x, y) | x<y且x.y互素} 的个数,则所求答案为2f(n)+1 f(n)表达式为: ,其中φ(n)为欧拉函数 这里有欧拉函数的一些介绍 #include <cstdio> ; ], sum[maxn + ]; void phi_table(int n)…
Description Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of…
题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段. 但是, BG 并不知道要有多少人来. 他只知道, 来的人数为n的约数,且小于n. 显然把蛋糕平均分成 n 块一定能满足要求.但是, BG 想要分出的块数尽量少.现在 BG 想知道,他要把蛋糕分成至少多少块,才能使得不管多少人来都能满足要求. 输入格式 输入文件名为 cake.in. 输入共一个整…
找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(hidden) 卡特兰数/第二类斯特林数(hidden) 置换群(hidden) 莫比乌斯反演III(hidden) 线性筛(hidden) 欧拉函数 计算单个欧拉函数 设\(n\)的唯一分解为\(p_i\),则\(\varphi(n)=n\prod(1-\frac{1}{p_i})\). 奇偶性 \…
题目链接: https://cn.vjudge.net/problem/SGU-102#author=0 题目大意: 求解小于等于N的且与N互质的数字有多少个 解题思路: 直接求欧拉函数即可 关于欧拉函数的知识:传送门 这里可以直接暴力,但是如果不会欧拉函数单个求,打表求的话还是看上述链接. #include<bits/stdc++.h> using namespace std; int main() { ; scanf("%d", &n); ; i <= n…
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT 对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 Source 湖北省队互测 若gcd(a,b)=素数p,则a=px,b=py且gcd(x,y)=1,这样,我们枚举小于n的素数p,对于每个素数p,只需求小于等于n/p的数中互质的数的对…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因子中含有p的q次方.然后让你求题目第一行给你的信息. 首先理一下思路. 第一步,我们需要算题目中要求的公式(第一行),首先,他是一个积性函数,所以我们先将题目中的第一行的式子命名为F(n).对于F(n),我们可以分着求他的每一个因子的解,然后最终将这一写乘起来就可以了. F(n) = F(p1^q1…
题目链接 首先来介绍欧拉函数. 设欧拉函数为f(n),则f(n)=1~n中与n互质的数的个数. 欧拉函数有三条引论: 1.若n为素数,则f(n)=n-1; 2.若n为pa,则f(n)=(p-1)*(pa-1). 3.若gcd(a,b)=1,则f(a*b)=f(a)*f(b). 下面代码给出欧拉函数的求法.可以和线性筛结合. ;i<n;++i){ if(!f[i]){ prime[++num]=i; phi[i]=i-; } ;j<=num&&prime[j]*i<n;++…
题意:欧拉函数 思路:欧拉函数 模板,代码略.…
通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k次幂:$\phi(n)=p^k-p^{k-1}=(p-1)p^{k-1}$,因为除了p的倍数外,其他数都跟n互质. 设n为正整数,以$\phi(n)$表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数. 欧拉函数是积性函数——若m,n互质, $\p…
http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它主要的性质. 1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数. 记为φ(n). 2.欧拉定理:若a与n互质.那么有a^φ(n) ≡ 1(mod n),经经常使用于求幂的模. 3.若p是一个质数,那么φ(p) = p-1.注意φ(1) = 1. 4.欧拉函数是积性函数: 若m与n互质,那么φ(nm) = φ(n) * φ(m). 若n = p^k且p为质数,那么φ(n) = p^k…
http://poj.org/problem?id=2478 http://acm.hdu.edu.cn/showproblem.php?pid=2824 欧拉函数模板裸题,有两种方法求出所有的欧拉函数,一是筛法,而是白书上的筛法. 首先看欧拉函数的性质: 欧拉函数是求小于n且和n互质(包括1)的正整数的个数.记为φ(n). 欧拉定理:若a与n互质,那么有a^φ(n) ≡ 1(mod n),经常用于求乘法逆元. 若p是一个质数,那么φ(p) = p-1,注意φ(1) = 1. 欧拉函数是积性函数…
A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2478 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 &l…
http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2*f[i]-1. #include <stdio.h> #include <iostream> #include <map> #include <set> #include <stack> #include <vector> #inclu…
递推法求欧拉函数: #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; long long phi[maxn]; void make_phi() { ;i<maxn;++i) phi[i]=i; ;i<maxn;++i) { if(phi[i]==i) { for(long long j=i;j<maxn;j+=i) { phi[j]=phi[j…
hdu1787,直接求欧拉函数 #include <iostream> #include <cstdio> using namespace std; int n; int phi(int n){ int ans=n; for(int i=2; i*i<=n; i++) if(n%i==0){ ans -= ans / i; while(n%i==0) n /= i; } if(n>1) ans -= ans / n; return ans; } int main(){…
题意: 求sigma phi(n) 思路: 线性递推欧拉函数 (维护前缀和) //By SiriusRen #include <cstdio> using namespace std; #define maxn 1000005 #define int long long int n,p[maxn+100],s[maxn+100],phi[maxn+100],tot; void Phi(){ for(int i=2;i<=maxn;i++){ if(!s[i])p[++tot]=i,phi…
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 2478]Farey Sequence(数论--欧拉函数 找规律求前缀和) 求 x/y,gcd(x,y)=1 且 x<y 很像.   而由于这里 x可等于或大于y,于是就求 欧拉函数的前缀和*2+边缘2个点+对角线1个点. 1 #include<cstdio> 2 #include<cst…
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n不互质,那么只要枚举n的全部约数,对于一个约数d,若使gcd(i/d,n/d)互质,这部分的gcd和=d*欧拉函数phi(n/d). 不断暴力从小到大枚举约数,这样就把gcd和切成好多个部分,累加起来就行了. 其实还可以公式化简,不过实在太繁琐了.可以参考金海峰神的解释. 由于要求好多欧拉函数,每次…
题目链接: http://poj.org/problem?id=2407 题目大意:求小于n且与n互质的正整数个数. 解题思路: 欧拉函数=小于n且与n互质的正整数个数. 公式=n*(1-1/P1)*(1-1/P2)....*(1-1/Pn),其中Pn为不同的质因数. 欧拉函数的求法有好多. 最简单的是手艹质因数分解,然后套公式计算. 注意特判1的时候ans=0. #include "cstdio" #include "map" using namespace st…
Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b)…
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int maxn = 1000015; bool u[maxn]; ll su[maxn]; ll num; ll…
Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8359   Accepted: 2737 Description Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are al…