传送门 首先有\(\varphi(ij) = \frac{\varphi(i) \varphi(j) \gcd(i,j)}{\varphi(\gcd(i,j))}\),把欧拉函数的定义式代入即可证明 然后就可以开始推式子(默认\(n \leq m\)): \(\begin{align*} \sum\limits_{i=1}^n \sum\limits_{j=1}^m \varphi(ij) &= \sum\limits_{i=1}^n \sum\limits_{j=1}^m \frac{\var…
题目大意:略 题面传送门 果然是一道神duliu题= = 出题人的题解传送门 出题人的题解还是讲得很明白的 1.关于$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\varphi (i,j)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\frac{\varphi (i)\varphi (j)gcd(i,j)}{\varphi (gcd(i,j))}$的证明,lgl神犇提供了一种方法 假设现在$gcd(i,j)$中有一个…
link 题意:求出\(\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\),对998244353取模 多组数据,\(T\le 10^4,n,m\le 10^5\). 前置知识:\(\varphi(ij)=\frac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))}\) 证明:我是口胡呢还是好好证呢还是口胡吧 按照欧拉函数的计算式展开,会发现,左边是\(ij\prod_{p|i \mathrm{\color{green}{…
题目链接 \(Description\) 给定\(n\),表示有一张\(n\)个点的无向图,两个点\(x,y\)之间有权值为\(1\)的边当且仅当\(\gcd(x,y)\neq1\).求\(1\sim n\)任意两点之间的最短路长度的和是多少.两个点不连通最短路长度为\(0\). \(n\leq10^7\). \(Solution\) 具体看这里吧,前面也挺重要的但我不抄了就简单记一下了(好像反而写的很详细了). 先分类讨论一下,然后记\(mn_x\)为\(x\)的最小质因子,主要的问题在于求:…
P4240 毒瘤之神的考验 题目背景 \(\tt{Salamander}\)的家门口是一条长长的公路. 又是一年春天将至,\(\tt{Salamander}\)发现路边长出了一排毒瘤! \(\tt{Salamander}\)想带一些毒瘤回家,但是,这时毒瘤当中钻出来了一个毒瘤之神! 毒瘤之神:你想要带毒瘤走吗?想要带走毒瘤,就必须回答我的问题!如果答不出来的话,你还是乖乖回家吧! 题目描述 毒瘤之神会问\(T\)次,每次给定\(n\),\(m\),\(\tt{Salamander}\)需要回答出…
题目 P4240 毒瘤之神的考验 神仙题\(emmm\) 前置 首先有一个很神奇的性质: \(\varphi(ij)=\dfrac{\varphi(i)\varphi(j)gcd(i,j)}{\varphi(gcd(i,j))}\) 证明: \[\begin{aligned} \varphi(i)\varphi(j) &= i\prod\limits_{p|i}\frac{p-1}{p}j\prod\limits_{p|j}\frac{p-1}{p}\\ &= ij\prod\limits…
洛谷题面传送门 先扯些别的. 2021 年 7 月的某一天,我和 ycx 对话: tzc:你做过哪些名字里带"毒瘤"的题目,我做过一道名副其实的毒瘤题就叫毒瘤,是个虚树+dp ycx:还有毒瘤之神的考验 tzc:???那是个啥? ycx:一道数论水题 然后我便做到了这个题,然后却发现它一点也不水-- 跑题了跑题了 首先我们显然不可能硬着头皮算 \(\varphi(ij)\),肯定要想办法将 \(\varphi(ij)\) 中的 \(i,j\) 独立开来.通过这题的套路可知 \(\var…
题目背景 Salamander的家门口是一条长长的公路. 又是一年春天将至,Salamander发现路边长出了一排毒瘤! Salamander想带一些毒瘤回家,但是,这时毒瘤当中钻出来了一个毒瘤之神! 毒瘤之神:你想要带毒瘤走吗?想要带走毒瘤,就必须回答我的问题!如果答不出来的话,你还是乖乖回家吧! 题目描述 毒瘤之神会问T次,每次给定n,m,Salamander需要回答出\(\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\ mod\ 998244353\). Salam…
传送门 Sol 分开考虑 \(\varphi(ij)\) 中 \(ij\) 的质因子 那么 \[\varphi(ij)=\frac{\varphi(i)\varphi(j)gcd(i,j)}{\varphi(gcd(i,j))}\] 直接莫比乌斯反演 设 \(g(x,i)=\sum_{j=1}^{x}\varphi(ij)\) 那么 \[ans=\sum_{i=1}^{min(n,m)}g(\lfloor\frac{n}{i}\rfloor,i)g(\lfloor\frac{m}{i}\rflo…
感觉这题真的特别有意思,涉及了 OI 中很多非常有意思.非常美的手法,比如--平衡两部分的时间复杂度.\(n \ln n\) 的那个 Trick等等,真的一种暴力的美学. 题目大意: 多组询问,求 \(f_{n,m}=\sum\limits_{i=1}^n\sum\limits_{j=1}^m \varphi(i\cdot j)\),\(1 \le n,m \le 1e5\),\(T \le 1e4\). 解法: 这里用一个套路一点的式子:\(\varphi(i\cdot j)=\frac{\v…
题目链接 洛谷P4240 题解 式子不难推,分块打表真的没想到 首先考虑如何拆开\(\varphi(ij)\) 考虑公式 \[\varphi(ij) = ij\prod\limits_{p | ij}\frac{p - 1}{p}\] 而 \[ \begin{aligned} \varphi(i)\varphi(j) &= i\prod\limits_{p | i}\frac{p - 1}{p} j \prod\limits_{p | j}\frac{p - 1}{p} \\ \varphi(i…
莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d是n的所有因子 μ(x)是莫比乌斯函数,它是这样计算的 μ(1) = 1 x = p1 * p2 * p3 ……*pk(x由k个不同的质数组成)则μ(x) = (-1)^k 其他情况,μ (x) = 0 比如 30 = 2 * 3 * 5 μ(30) = (-1)^3 4 = 2 * 2 μ(4)…
题目大意 给你\(a_1\ldots a_n,l,c\)每次给你\(x,y\),求有多少个序列满足:长度\(\leq l\),每个元素是\([1,c]\),循环右移\(a_j(x\leq j\leq y)\)次后和原序列相同. \(n,q\leq 100000,l,c\leq{10}^9,lcm(a_1,\ldots a_n)\leq{10}^13\) 题解 显然只有右移\(\gcd(a_x,a_{x+1},\ldots,a_y)\)次后和原序列相同才满足条件. 先求出\(s=\gcd(a_x,…
莫比乌斯反演真(TMD)难学.我自看了好长时间. BZOJ 2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 718 Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,…
首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HI…
题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就好了.注意要删去重复的. 关于 莫比乌斯反演 的结论 #include<bits/stdc++.h> using namespace std; typedef long long LL; const int maxn=1e6; ]; ]; ]; void init() { mu[]=; ; ;i&…
[Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. 输入输出格式 输入格式: The first line of the standard input contains one integer nn (1\le n\le 50 0001≤n≤50 000),de…
[CF809E]Surprise me!(动态规划,虚树,莫比乌斯反演) 题面 洛谷 CodeForces 翻译: 给定一棵\(n\)个节点的树,每个点有一个权值\(a[i]\),保证\(a[i]\)是一个\(1..n\)的排列. 求\[\frac{1}{n(n-1)}\sum_{i=1}^n\sum_{j=1}^n\varphi(a_i*a_j)·dist(i,j)\] 其中,\(\varphi(x)\)是欧拉函数,\(dist(i,j)\)表示\(i,j\)两个节点在树上的距离. 题解 神题…
莫比乌斯函数:http://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html Orz  PoPoQQQ…
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式 T行,每行一个整数,表示你所求的答案. 输入样例 2 7 4 5 6 输出样例 110 121 提示 1<=N, M<=50000 1<=T<=50000 题解 好神的题[是我太弱吧] 首先上来就伤结论.. 题目所求 \[ans…
题目链接 真是神TM莫比乌斯 首先来看一个神奇的结论:求gcd(x,y)==k的对数,其中1<=x<=n,1<=y<=m 等同于求gcd(x,y)==1的对数,其中1<=x<=n/k,1<=y<=m/k 然后这题就变成了求gcd(x,y)==1的对数,其中1<=x<=n/k,1<=y<=m/k 我们再把莫比乌斯反演的定义copy一下 设有函数$F(n),f(n)$定义在非负整数集合上 有$F(n)=\sum\limits_{d|n}^…
题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就好了.注意要删去重复的. 关于 莫比乌斯反演 的结论 ACdreamers大神的相关博客 莫比乌斯反演  莫比乌斯反演与最大公约数 #include<bits/stdc++.h> using namespace std; typedef long long LL; const int maxn=1…
神题! 一眼powerful number 复习了一下+推半天. 可以发现G函数只能为\(\sum_{d}[d|x]d\) 不断的推 可以发现最后需要求很多块G函数的前缀和 发现只有\(\sqrt(n)\)的复杂度. 于是自闭了.不过这个做法可以跑过\(1e9\) 第二个subtask没有那么严格所以可以跑过 不过我CE了2333... 也没考虑\(min_25\)筛 可能学的不太精通.. 正解是发现 \(f(n)=(p^{k1}+1)(p^{k2}+1)...\) 然后 将其展开 求每个数字对…
Description 给定一颗 \(n\) 个顶点的树,顶点 \(i\) 的权值为 \(a_i\).求: \[\frac{1}{n(n-1)}\sum_{i=1}^n\sum_{j=1}^n\varphi(a_i\times a_j)\times\text{dist}(i, j) \] 其中 \(a\) 为一个 \(1\sim n\) 的排列. Hint \(1\le n\le 2\times 10^5\) Solution 据说是套路题 然而我不会这个套路于是我觉得是神题 开一个 blog…
瞎扯 建议在阅读题解之前欣赏这首由普莉兹姆利巴姐妹带来的的合奏. Q:你参加省选吗?不是说好了考完 NOIP 就退吗. A:对啊. Q:那你学这玩意干啥? A:对啊,我学这玩意干啥? 写这题的动机? 一是一直很喜欢的曲子,感觉快退役了,圆个梦. 二是写了很多题解了,之前认为最优秀的是 NOI嘉年华的题解,但被叉掉之后不知道该怎么改了,于是删了.其他的都太不精致,都不满意.想在退役之前留下一篇最优秀的题解,于是瞅准了这题. 再有,就是想争口气吧. 最后扯一句,题面里将露娜萨(Lunasa)误写成了…
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. \(1 \leq T \leq 10^4\),\(1 \leq n,m \leq 10^7\). 今天终于学会了莫比乌斯反演反演~~,就写篇博客加深下印象吧. 要说这莫比乌斯反演有多么博大精深,就不得不从莫比乌斯函数 \(\mu(x)\) 说起. 我们定义 \(\mu(x)\) 为: \[\mu(…
不学莫反,不学狄卷,就不能叫学过数论 事实上大概也不是没学过吧,其实上赛季头一个月我就在学这东西,然鹅当时感觉没学透,连杜教筛复杂度都不会证明,所以现在只好重新来学一遍了(/wq 真·实现了水平的负增长((( 1. \(\mu\) 与 \(\varphi\) 真就从头开始呗 对于整数 \(n=p_1^{\alpha_1}\times p_2^{\alpha_2}\times\cdots\times p_k^{\alpha_k}\),定义莫比乌斯函数 \(\mu(n)\) 为: \[\mu(n)=…
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌斯反演函数: void Init() { memset(vis,0,sizeof(vis)); mu[1] = 1; cnt = 0; for(int i=2; i<N; i++) { if(!vis[i]) { prime[cnt++] = i; mu[i] = -1; } for(int j=0;…
2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究…
2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…