单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as np import matplotlib.pyplot as plt #输入数据 X = np.array([[,,], [,,], [,,], [,,]]) #标签 Y = np.array([[], [], [-], [-]]) #权值初始化,3行1列,取值范围-1到1 W = (np.rand…
1 LMS 学习规则 1.1 LMS学习规则定义 MSE=(1/Q)*Σe2k=(1/Q)*Σ(tk-ak)2,k=1,2,...,Q 式中:Q是训练样本:t(k)是神经元的期望输出:a(k)是神经元的实际输出. 线性神经网络的目标是寻找最适合的权值W,使得均方差MSE最小,只要对MSE求ω得偏导数,然后让偏导数等于0,那么就可以计算出MSE的极值. for example: 原始输入:X1=[0 0]T.t1=0,X2=[1 0]T.t2=0,X3=[0 1]T.t3=0,X4=[1 1]T.…
简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了. 当感知机使用阈值激活函数时,不能使用 TensorFlow 优化器来更新权重.我们将不得不使用权重更新规则:   η 是学习率.为了简化编程,当输入固定为 +1 时,偏置可以作为一个额外的权重.那么,上面的公式可以用来同时更新权重和偏置. 下面讨论如何实现单层感知机: 导入所需的模块:   定义…
TensorFlow单层感知机实现 简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,只能解决线性可分的问题.虽然限制了单层感知机只能应用于线性可分问题,但具有学习能力已经很好了. 当感知机使用阈值激活函数时,不能使用 TensorFlow 优化器来更新权重.不得不使用权重更新规则: η 是学习率.为了简化编程,当输入固定为 +1 时,偏置可以作为一个额外的权重.那么,上面的公式可以用来同时更新权重和偏置. 下面讨论如何实现单层感知机: 导入所…
BZOJ_2460_[BeiJing2011]元素_线性基 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔 法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石. 一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而 使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制 出法杖,这个现象被称为“魔法抵消” .特别地,如果在炼制过程中使用超过 一块同一种矿石,那么一定会发生“魔法抵消”.  …
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示  (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着 怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是 说脸哥可以利用手上的这些装备组合出这件装备的效…
LOJ114_k 大异或和_线性基 先一个一个插入到线性基中,然后高斯消元. 求第K小就是对K的每一位是1的都用对应的线性基的一行异或起来即可. 但是线性基不包含0的情况,因此不能确定能否组成0,需要特判. 在插入一个数时如果这个数最后变成0了就说明可以组成0. 代码: #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll;…
BZOJ_2844_albus就是要第一个出场_线性基 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子 集构成的集合.定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切t属于T现在albus把2^S中每个集 合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始). 给定一个数, 那么这个数在序列B中第1 次出现时的下标…
BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第…
秒懂神经网络---BP神经网络具体应用不能说的秘密 一.总结 一句话总结: 还是要上课和自己找书找博客学习相结合,这样学习效果才好,不能单视频,也不能单书 BP神经网络就是反向传播神经网络 1.BP神经网络是什么? 反向传播神经网络:通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出. BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出.它是一种应用…