CNN-Backbone的Pytorch实现】的更多相关文章

引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从简单的数据集入手如手写数字识别.泰坦尼克号.房价预测,这些目前已经有丰富且成熟的方案可以参考,之后关注未来就业的方向如计算广告.点击率预测,有合适的时机,再与小伙伴一同参加线上比赛. 数据集 介绍 MNIST ("Modified National Institute of Standards an…
博客:博客园 | CSDN | blog 写在前面 如题,这篇文章将尝试从卷积拆分的角度看一看各种经典CNN backbone网络module是如何演进的,为了视角的统一,仅分析单条路径上的卷积形式. 形式化 方便起见,对常规卷积操作,做如下定义, \(I\):输入尺寸,长\(H\) 宽\(W\) ,令长宽相同,即\(I = H = W\) \(M\):输入channel数,可以看成是tensor的高 \(K\):卷积核尺寸\(K \times K\),channel数与输入channel数相同…
​  前言  本文介绍了一个端到端的用于视觉跟踪的transformer模型,它能够捕获视频序列中空间和时间信息的全局特征依赖关系.在五个具有挑战性的短期和长期基准上实现了SOTA性能,具有实时性,比Siam R-CNN快6倍. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:Learning Spatio-Temporal Transformer for Visual Tracking 代码:https:/…
接上一篇完成的pytorch模型训练结果,模型结构为ResNet18+fc,参数量约为11M,最终测试集Acc达到94.83%.接下来有分两个部分:导出onnx和使用onnxruntime推理. 一.pytorch导出onnx 直接放函数吧,这部分我是直接放在test.py里面的,直接从dataloader中拿到一个batch的数据走一遍推理即可. def export_onnx(net, testloader, output_file): net.eval() with torch.no_gr…
paper url: https://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf year: 2014 abstract 这篇文章出发点是如何减少图像相关任务的计算量, 提出通过使用 attention based RNN 模型建立序列模型(recurrent attention model, RAM), 每次基于上下文和任务来适应性的选择输入的的 image patch, 而不是整张图片, 从而使得计算量…
Auto-ReID: Searching for a Part-aware ConvNet for Person Re-Identification 2019-03-26 15:27:10 Paper:https://arxiv.org/pdf/1903.09776.pdf 1. Background and Motivation: 本文将 NAS 的技术用到了 person re-ID 上,但是并非简单的用 NAS 技术来搜索一种 ConvNet,本文考虑到 re-ID 的特色,将其结合到 N…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM.BiLSTM等多个神经网络模型的的实现.这篇文章总结一下最近一段时间遇到的问题.处理方法和相关策略,以及经验(其实并没有什么经验)等,白菜一枚. Demo Site:  https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn.html?highlight=conv2d#torch.nn.Conv2d https://www.cnblogs.com/chuantingSDU/p/8120065.html https://blog.csdn.net/chaolei3/article/details/79374563 1x1…
Pytorch是torch的Python版本,对TensorFlow造成很大的冲击,TensorFlow无疑是最流行的,但是Pytorch号称在诸多性能上要优于TensorFlow,比如在RNN的训练上,所以Pytorch也吸引了很多人的关注.之前有一篇关于TensorFlow实现的CNN可以用来做对比. 下面我们就开始用Pytorch实现CNN. step 0 导入需要的包 import torch import torch.nn as nn from torch.autograd impor…
本次作业:Andrew Ng的CNN的搭建卷积神经网络模型以及应用(1&2)作业目录参考这位博主的整理:https://blog.csdn.net/u013733326/article/details/79827273 今天要实现的是识别手势姿势表达的数字 我的Git传送门:https://github.com/VVV-LHY/deeplearning.ai/tree/master/CNN/RecognizeGestureNum 本来是接着day17用了numpy编了一个卷积层和池化层的前向传播…
第一次,调了很久.它本来已经很OK了,同时适用CPU和GPU,且可正常运行的. 为了用于性能测试,主要改了三点: 一,每一批次显示处理时间. 二,本地加载测试数据. 三,兼容LINUX和WIN 本地加载测试数据时,要注意是用将两个pt文件,放在processed目录下,raw目录不要即可. 训练数据的定义目录是在当前目录 data/MNIST/processed目录下. 我自己弄了个下载: http://u.163.com/2FUm6N1L  提取码: XJpmqUoR 只能下载20次,过了可在…
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # 配置GPU或CPU设置 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 超参数设置 num_epochs = 5 num_classes = 10 batch_size = 100 learning_…
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深度学习实践者. 在本文中,我们将看一个有趣的多模态主题,我们将结合图像和文本处理来构建一个有用的深度学习应用程序,即图像字幕.图像字幕是指从图像生成文本描述的过程 - 基于图像中的对象和动作.例如: 这个过程在现实生活中有很多潜在的应用.值得注意的是保存图像的标题,以便仅在此描述的基础上可以在稍后阶…
我们按照超简单!pytorch入门教程(四):准备图片数据集准备好了图片数据以后,就来训练一下识别这10类图片的cnn神经网络吧. 按照超简单!pytorch入门教程(三):构造一个小型CNN构建好一个神经网络,唯一不同的地方就是我们这次训练的是彩色图片,所以第一层卷积层的输入应为3个channel.修改完毕如下: 我们准备了训练集和测试集,并构造了一个CNN.与之前LeNet不同在于conv1的第一个参数1改成了3 现在咱们开始训练 我们训练这个网络必须经过4步: 第一步:将输入input向前…
下载Fasion-MNIST数据集 Fashion-MNIST是一个替代原始的MNIST手写数字数据集的另一个图像数据集. 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供.其涵盖了来自10种类别的共7万个不同商品的正面图片.Fashion-MNIST的大小.格式和训练集/测试集划分与原始的MNIST完全一致.60000/10000的训练测试数据划分,28x28的灰度图片.你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码. Fashion-MNIST 数…
先来看一下这是什么任务.就是给你手写数组的图片,然后识别这是什么数字: dataset 首先先来看PyTorch的dataset类: 我已经在从零学习pytorch 第2课 Dataset类讲解了什么是dataset类以及他的运行原理 class MNIST_data(Dataset): """MNIST dtaa set""" def __init__(self, file_path, transform = transforms.Compos…
用Pytorch写了两个CNN网络,数据集用的是FashionMNIST.其中CNN_1只有一个卷积层.一个全连接层,CNN_2有两个卷积层.一个全连接层,但训练完之后的准确率两者差不多,且CNN_1训练时间短得多,且跟两层的全连接的准确性也差不多,看来深度学习水很深,还需要进一步调参和调整网络结构. CNN_1: runnig time:29.795 sec.accuracy: 0.8688 CNN_2: runnig time:165.101 sec.accuracy: 0.8837 imp…
Pytorch和CNN图像分类 PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序.它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速,同时还支持动态神经网络,这一点是现在很多主流框架如TensorFlow都不支持的. PyTorch提供了两个高级功能: 1.具有强大的GPU加速的张量计算(如Numpy) 2.包含自动求导系统的深度神经网络.除了Facebook之外,Twitter.GMU和Salesforce等机构都采用了PyT…
CNN的Pytorch实现(LeNet)   上次写了一篇CNN的详解,可是累坏了老僧我.写完后拿给朋友看,朋友说你这Pytorch的实现方式对于新人来讲会很不友好,然后反问我说里面所有的细节你都明白了吗.我想想,的确如此.那个源码是我当时<动手学pytorch>的时候整理的,里面有很多包装过的函数,对于新入门的人来讲,的确是个大问题.于是,痛定思痛的我决定重新写Pytorch实现这一部分,理论部分我就不多讲了,咱们直接分析代码,此代码是来自Pytorch官方给出的LeNet Model.你可…
# library # standard library import os # third-party library import torch import torch.nn as nn import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters EPOCH = 1 # tr…
1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,img_size=32,img_class=13): super(Net, self).__init__() self.conv1 = torch.nn.Sequential( torch.nn.Conv2d(in_channels=img_rgb, out_channels=img_size, ke…
torch.nn只接受mini-batch的输入,也就是说我们输入的时候是必须是好几张图片同时输入. 例如:nn. Conv2d 允许输入4维的Tensor:n个样本 x n个色彩频道 x 高度 x 宽度 #coding=utf-8 import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Net(nn.Module): #定义Net的初…
论文  < Convolutional Neural Networks for Sentence Classification>通过CNN实现了文本分类. 论文地址: 666666 模型图: 模型解释可以看论文,给出code and comment: # -*- coding: utf-8 -*- # @time : 2019/11/9 13:55 import numpy as np import torch import torch.nn as nn import torch.optim…
# library # standard library import os # third-party library import torch import torch.nn as nn import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters EPOCH = 1 # tr…
CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图片性质不变.类似于图片压缩. 相比与Fully Connected,减少了权重数目. 组成结构 卷积层 使用一个集合的滤波器在输入数据上滑动,得到内积,形成K张二维的激活图,作为该层卷积层的输出. 每类的滤波器寻找一种特征进行激活. 一个滤波器的高度必须与输入数据体的深度一致. 卷积层的输出深度是一…
卷积 Conv2d 2D卷积函数和参数如下 nn.Conv2d( in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros' ) 参数说明: in_channels: 输入通道数,RGB图片一般是3 out_channels: 输出通道,也可以理解为kernel的数量 kernel_size:kernel的和宽设置 kernel…
这是一个基于微调卷积神经网络的图像检索的代码实现,这里我就基于代码做一个实现思路的个人解读,如果有不对的地方或者不够详细的地方,欢迎大家指出. 代码的GitHub地址:filipradenovic/cnnimageretrieval-pytorch (Commit c340540) 相关论文地址: Fine-tuning CNN Image Retrieval with No Human Annotation,  Radenović F., Tolias G., Chum O., TPAMI 2…
目录 1. 准备数据集 1.1 MNIST数据集获取: 1.2 程序部分 2. 设计网络结构 2.1 网络设计 2.2 程序部分 3. 迭代训练 4. 测试集预测部分 5. 全部代码 1. 准备数据集 1.1 MNIST数据集获取: torchvision.datasets接口直接下载,该接口可以直接构建数据集,推荐 其他途径下载后,编写程序进行读取,然后由Datasets构建自己的数据集 ​ ​ 本文使用第一种方法获取数据集,并使用Dataloader进行按批装载.如果使用程序下载失败,请将其…