本题是一道求最大子矩阵的题,可以使用悬线法来做,因为是相邻的01矩阵,所以需要对悬线法进行改动. #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <cstdlib> #include <cmath> using namespace std; const int MAXN=2005; int init(){ in…
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的悬线法 论文:浅谈用极大化思想解决最大子矩形问题 H[i][j]表示(i,j)向上最长连续多少距离不出现障碍点(悬线) L[i][j]表示H[i][j]这根悬线最多可以向左移到什么位置 R[i][j]表示H[i][j]这根悬线最多可以向右移到什么位置 递推方式看代码吧,很好理解的 //棋盘制作 (Z…
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵的最大值 那么我们定义3个数组 l[i][j]表示(i,j)能到达最左边的坐标 r[i][j]表示(i,j)能到达最右边的坐标 up[i][j]表示(i,j)能向上最大距离 即线的长度 那么状态转移方程得出: l[i][j]=max(l[i][j],l[i-][j]);//满足条件的最大值为左边(因…
和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169  p4147  p2701  p1387 #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) #define _for(i, a, b) for(int i = (a); i <= (b); i++) using namespace std; const int MAXN = 2…
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定矩阵中满足条件的最大子矩阵 做法: 用一条线(横竖貌似都行)左右移动直到不满足约束条件或者到达边界 定义几个东西: left[i][j]left[i][j]:代表从(i,j)(i,j)能到达的最左位置 right[i][j]right[i][j]:代表从(i,j)(i,j)能到达的最右位置 up[i…
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 8×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的主人公小Q,正是国际象棋的狂热爱好者.作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则. 小Q找到了一张由 N×M 个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一.小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能…
题目 一道悬线法的裸题,悬线法主要是可以处理最大子矩阵的问题. 而这道题就是比较经典的可以用悬线法来处理的题. 而悬线法其实就是把矩阵中对应的每个位置上的元素分别向左向上向右,寻找到不能到达的地方,然后递推或者说是DP,这样在每次递推完之后就可以更新最小值了. \([height_{i, j}]\) :表示以\((i,j)\)为底的悬线的高 \([left_{i,j}]\) :表示向左最多能移动到的位置 \([right_{i,j}]\) :表示向右最多能移动到的位置 #include <ios…
洛谷P1169 bzoj1057 这个题目跟最大全0子矩阵是类似的.正方形的话,只要把任意极大子正方形(”极大“定义见后面的”论文“)当成把某个极大子矩形去掉一块变成正方形即可,容易解决. 解法1:看论文里面的“算法2“(那个是最大全0子矩阵方法,改一下就可以用在此题) #include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; #d…
BZOJ原题链接 洛谷原题链接 显然可以用数据结构或\(ST\)表或单调队列来维护最值. 这里采用单调队列来维护. 先用单调队列维护每一行的最大值和最小值,区间长为正方形长度. 再用单调队列维护之前维护出的每行最值数组的每一列的最大值和最小值,区间同上. 最后维护出的数组其实就是以每个点为左上角的正方形中的最值,直接扫一遍求最小的差即可. 借用洛谷题解里大佬的图以更好说明: (\(X,x\)分别是维护出原矩阵中行的最大.最小值,\(Y,y\)分别是维护\(X,x\)中列的最大.最小值) #inc…
BZOJ原题链接 洛谷原题链接 STL 本题可以直接使用\(\mathtt{STL\ multiset}\)水过去. 因为本题插入数的操作实际上就是将原数列分为\(n\)段,在每一段的末尾插入数,所以我们只需维护每一段的开头和末尾两个数,这样更新相邻差值时只需考虑插入数与原末尾和下一段的开头两个数的差值就好. 而维护这个差值,只开一个\(\mathtt{multiset}\)就好(其中是所有相邻差值).当插入一个数时,先将原本的末尾和后一段开头的差值从\(\mathtt{multiset}\)里…