pca数学原理(转)】的更多相关文章

PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA的数学原理 前言 数据的向量表示及降维问题 向量的表示及基变换 内积与投影 基 基变换的矩阵表示 协方差矩阵及优化目标 方差 协方差 协方差矩阵 协方差矩阵对角化 算法及实例 PCA算法 实例 进一步讨论 前言 PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中…
PCA 的数学原理和可视化效果 本文结构: 什么是 PCA 数学原理 可视化效果 1. 什么是 PCA PCA (principal component analysis, 主成分分析) 是机器学习中对数据进行降维的一种方法. 例如,我们有这样的交易数据,它有这几个特征:(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额),从经验可知,“浏览量”和“访客数”,“下单数”和“成交数”之间会具有较强的相关关系.这种情况下,我们保留其中的两个维度就可以保证原有的信息完整. 但是当我们在做降维的…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维 数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助 读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 假设你对PCA的推导和概念还不是非常清楚.建议阅读本文的前导文章 http://blog.csdn.net/baimafujinji/article/details/50372906 6.4.3 主成分变换的实现 本小节通过一个算例验证一下之前的推导.在前面给出的…
欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 阅读本文须要最主要的线性代数知识和概率论基础:) 6.4.2 主成分变换的推导 前面提到的一国经济增长与城市化水平关系的问题是典型二维问题,而协方差也仅仅能处理二维问题.那维数多了自然就须要计算多个协方差.所以自然会想到使用矩阵来组织这些数据.为了帮助读者理解上面…
PCA(Principal Component Analysis)主成分分析法的数学原理推导1.主成分分析法PCA的特点与作用如下:(1)是一种非监督学习的机器学习算法(2)主要用于数据的降维(3)通过降维,可以发现人类更加方便理解的特征(4)其他的应用:去燥:可视化等2.主成分分析法的数学原理主要是利用梯度上升法来最优化目标函数,即利用梯度上升法来求取效用函数的最大值,其具体的数学原理推导过程如下所示: 对于以上的函数,因为梯度的向量化表示我们已经求得,因此,我们便可以通过梯度上升法求取函数的…
引言: 最近一直在学习主成分分析(PCA),所以想把最近学的一点知识整理一下,如果有不对的还请大家帮忙指正,共同学习. 首先我们知道当数据维度太大时,我们通常需要进行降维处理,降维处理的方式有很多种,PCA主成分分析法是一种常用的一种降维手段,它主要是基于方差来提取最有价值的信息,虽然降维之后我们并不知道每一维度的数据代表什么意义,但是它将主要的信息成分保留了下来,那么PCA是如何实现的呢? 本文详细推导了PCA的数学原理,最后以实例进行演算. PCA的数学原理 (一)降维问题 大家都知道,PC…
数学原理参考:https://blog.csdn.net/aiaiai010101/article/details/72744713 实现过程参考:https://www.cnblogs.com/eczhou/p/5435425.html 两篇博文都写的透彻明白. 自己用python实现了一下,有几点疑问,主要是因为对基变换和坐标变换理解不深. 先附上代码和实验结果: code: from numpy import * import numpy as np import matplotlib.p…
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据.具体的,假如我们的数据集是n维的,共有m个数据$(x^{(1)},x^{(2)},...,x^{(m)})$.我们希望将这m个数据的维度从n维降到n'维…
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个…
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题.学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单. 2019年04月25日 不该先说covariacne matrix协方差矩阵的,此乃后话,先从直觉理解PCA.先看一个数据实例,明显的两个维度之间有一个相关性,大部分的方差可以被斜对角的维度解释,少数的noise则被虚线解…
如果要得到pose视图,除非有精密的测量方法,否则进行大量的样本采集时很耗时耗力的.可以采取一些取巧的方法,正如A Survey on Partial of 3d shapes,描述的,可以利用已得到的3D模型,利用投影的方法 (page10-透视投影或者正射投影),自动得到精确的3D单向视图. 其中的遇到了好几个难题:透视投影的视角问题:单侧面的曲面补全问题(曲面插值问题):pose特征的描述性问题. 一篇文章看完视觉及相关通略. 先普及一下基础知识: 一:图像处理.计算机图形学.计算机视觉和…
PCA主成分分析法的数据主成分分析过程及python原理实现 1.对于主成分分析法,在求得第一主成分之后,如果需要求取下一个主成分,则需要将原来数据把第一主成分去掉以后再求取新的数据X’的第一主成分,即为原来数据X的第二主成分,循环往复即可. 2.利用PCA算法的原理进行数据的降维,其计算过程的数学原理如下所示,其降维的过程会丢失一定的信息,因此采用恢复过程恢复原来的高维数据后,它会恢复为原来数据在新的主成分上的映射点,而不再是原来的坐标点. (1)高维数据的降维(从n维降到k维数据) (2)从…
主成分分析法PCA的原理及计算 主成分分析法 主成分分析法(Principal Component Analysis),简称PCA,其是一种统计方法,是数据降维,简化数据集的一种常用的方法 它本身是一个非监督学习的算法,作用主要是用于数据的降维,降维的意义是挺重要的,除了显而易见的通过降维,可以提高算法的效率之外,通过降维我们还可以更加方便的进行可视化,以便于我们去更好的理解数据,可以发现更便于人类理解,主成分分析其一个很重要的作用就是去噪,有的时候,经过去噪以后再进行机器学习,效果会更好 我们…
实验平台:win7,VS2010 先上结果截图(文章最后下载程序,解压后直接运行BIN文件夹下的EXE程序): a.鼠标拖拽旋转物体,类似于OGRE中的“OgreBites::CameraStyle::CS_ORBIT”. b.键盘WSAD键移动镜头,鼠标拖拽改变镜头方向,类似于OGRE中的“OgreBites::CameraStyle::CS_FREELOOK”. 1.坐标变换的一个例子,两种思路理解多个变换的叠加 现在考虑Scale(1,2,1); Transtale(2,1,0); Rot…
RSA加密数学原理 */--> *///--> *///--> UP | HOME RSA加密数学原理 Table of Contents 1 引言 2 RSA加密解密过程 2.1 加密 2.2 解密 3 收尾 1 引言 RSA加密算法,即是目前最有影响力的咬钥加密算法, 他能够抵抗到目前为止已知的绝大多数密码攻击, 已被ISO推荐为公钥数据加密标准. 该算法基于一个十分简单的数论事实: 将两个大素数乘十分容易, 但相要对乘积进行因式分解却极其困难, 因此可以将乘积公开作为加密密钥. (…
word2vec 是 Google 于 2013 年推出的一个用于获取词向量的开源工具包.我们在项目中多次使用到它,但囿于时间关系,一直没仔细探究其背后的原理. 网络上 <word2vec 中的数学原理详解> 有一系列的博文,对这个问题已经做了很好的阐述.作者十分用心,从最基础的预备知识.背景知识讲起,这样读者就不用到处找相关资料了. 这里,我就把其博文链接直接搬运过来: (一)目录和前言 (二)预备知识 (三)背景知识 (四)基于 Hierarchical Softmax 的模型 (五)基于…
非对称加密技术,在现在网络中,有非常广泛应用.加密技术更是数字货币的基础. 所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密. 但是对于其原理大部分同学应该都是一知半解,今天就来分析下经典的非对称加密算法 - RSA算法. 通过本文的分析,可以更好的理解非对称加密原理,可以让我们更好的使用非对称加密技术. 题外话: 并博客一直有打算写一系列文章通俗的密码学,昨天给站点上https, 因其中使用了RSA算法,就查了一下,发现现在网上介绍RSA算法的文章…
主要参考:    word2vec 中的数学原理详解                 自己动手写 word2vec…
主要参考:    word2vec 中的数学原理详解                 自己动手写 word2vec 编码的话,根是不记录在编码中的 这一篇主要讲的就是霍夫曼树(最优二叉树)和编码.  参考   快速画出哈夫曼树 / 霍夫曼树 / 最优树   了解其构成.    哈夫曼树及 python 实现 python 代码 构建霍夫曼树 ,获得霍夫曼编码    简单实现: #节点类 class Node(object): def __init__(self,name=None,value=N…
最近在看词向量了,因为这个概念对于语言模型,nlp都比较重要,要好好的学习一下.把网上的一些资料整合一下,搞个系列. 主要参考:    word2vec 中的数学原理详解                 自己动手写 word2vec word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注. 由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,…
数学原理 在数字信号处理中,相关(correlation)可以分为互相关(cross correlation)和自相关(auto-correlation). 互相关是两个数字序列之间的运算:自相关是单个数字序列本身的运算,可以看成是两个相同数字序列的互相关运算.互相关用来度量一个数字序列移位后,与另一个数字序列的相似程度.其数学公式如下: 其中,f 和 g 为数字序列,n 为移位的位数,f* 表示 f 序列值的复数共轭,即复数的实部不变,虚部取反. 而卷积(convolution)与互相关运算相…
  模拟上帝之手的对抗博弈——GAN背后的数学原理 简介 深度学习的潜在优势就在于可以利用大规模具有层级结构的模型来表示相关数据所服从的概率密度.从深度学习的浪潮掀起至今,深度学习的最大成功在于判别式模型.判别式模型通常是将高维度的可感知的输入信号映射到类别标签.训练判别式模型得益于反向传播算法.dropout和具有良好梯度定义的分段线性单元.然而,深度产生式模型相比之下逊色很多.这是由于极大似然的联合概率密度通常是难解的,逼近这样的概率密度函数非常困难,而且很难将分段线性单元的优势应用到产生式…
//看了多少遍SVM的数学原理讲解,就是不懂,对偶形式推导也是不懂,看来我真的是不太适合学数学啊,这是面试前最后一次认真的看,并且使用了sklearn包中的SVM来进行实现了一个鸢尾花分类的实例,进行进一步的理解. 1.鸢尾花分类实例 转自:https://www.cnblogs.com/luyaoblog/p/6775342.html 数据集: 特点:每个属性及标记之间使用逗号进行隔开. #encoding:utf-8 from sklearn import svm import numpy…
什么是BP网络 BP网络的数学原理 BP网络算法实现 转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/44514073  上一篇文章介绍了KNN分类器,当时说了其分类效果不是很出色但是比较稳定,本文后面将利用BP网络同样对Iris数据进行分类. 可以结合下面这几篇文章一起看: http://www.cnblogs.com/jzhlin/archive/2012/07/28/bp.html http://www.cnblogs…
//2019.08.17 #支撑向量机SVM(Support Vector Machine)1.支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的泛化能力尽可能地好,因此SVM对未来数据的预测也是更加准确的. 2.支撑向量机SVM有两种:Hard Margin SVM和Soft Margin SVM,对于第一种严格的支撑向量机算法主要解决的是线性可分的数据问题,而第二种SVM是在第一种的基础上改进而来,可以解决普遍的数据问题,对于问题的线性可…
PCA的实质就是要根据样本向量之间的相关性排序,去掉相关性低的信息,也就是冗余的特征信息. 我们都知道噪声信号与待测量的信号之间实际上是没有相关性的,所以我我们利用这个原理就可以将与待测量无关的噪声信号PCA去噪 PCA的原理也就是它的简单的实现过程就是: 首先将样本数据构造成对应的数据矩阵,然后求取该数据矩阵的协方差矩阵,协方差矩阵实际上就是表示随机向量之间的相关性的矩阵,那么为什么协方差矩阵可以表示随机向量之间的相关性呢? 协方差矩阵是怎么求解的呢?我们都知道方差实际上表示的是数据偏离中心的…
主成分分析法(PCA)原理和步骤 主成分分析(Principal Component Analysis,PCA)是一种多变量统计方法,它是最常用的降维方法之一,通过正交变换将一组可能存在相关性的变量数据,转换为一组线性不相关的变量,转换后的变量被称为主成分. 可以使用两种方法进行 PCA,分别是特征分解或奇异值分解(SVD). 准备工作 PCA 将 n 维输入数据缩减为 r 维,其中 r<n.简单地说,PCA 实质上是一个基变换,使得变换后的数据有最大的方差,也就是通过对坐标轴的旋转和坐标原点的…