pytorch1.0批训练神经网络】的更多相关文章

pytorch1.0批训练神经网络 import torch import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoader, 能用它来包装自己的数据, 进行批训练. torch.manual_seed(1) # reproducible # 批训练的数据个数 BATCH_SIZE = 5 BATCH_SIZE = 8 x = torch.linspace(1, 10, 10) # this is x data (…
用pytorch1.0搭建简单的神经网络:进行多分类分析 import torch import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot as plt # 假数据 # make fake data n_data = torch.ones(100, 2) x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2) y0 = torch.z…
pytorch1.0网络保存.提取.加载 import torch import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot as plt # 假数据 x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1) # x data (tensor), shape=(100, 1) y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y d…
用pytorch1.0搭建简单的神经网络 import torch import torch.nn.functional as F # 包含激励函数 # 建立神经网络 # 先定义所有的层属性(__init__()), 然后再一层层搭建(forward(x))层于层的关系链接 class Net(torch.nn.Module): # 继承 torch 的 Module def __init__(self, n_feature, n_hidden, n_output): super(Net, se…
人的理想志向往往和他的能力成正比. —— 约翰逊 最近一直在使用pytorch深度学习框架,很想用pytorch搞点事情出来,但是框架中一些基本的原理得懂!本次,利用pytorch实现ResNet神经网络对cifar-10数据集进行分类.CIFAR-10包含60000张32*32的彩色图像,彩色图像,即分别有RGB三个通道,一共有10类图片,每一类图片有6000张,其类别有飞机.鸟.猫.狗等. 注意,如果直接使用torch.torchvision的models中的ResNet18或者ResNet…
pytorch1.0进行Optimizer 优化器对比 import torch import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoader, 能用它来包装自己的数据, 进行批训练. import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot as plt LR = 0.01 # 学习率 BATCH_SIZE = 32 EPOCH = 12…
原文链接:https://developers.google.com/machine-learning/crash-course/training-neural-networks/ 反向传播算法是最常见的一种神经网络训练算法.借助这种算法,梯度下降法在多层神经网络中将成为可行方法.TensorFlow 可自动处理反向传播算法,因此不需要对该算法作深入研究. 1- 最佳做法 1.1 失败案例 很多常见情况都会导致反向传播算法出错. 梯度消失 较低层(更接近输入)的梯度可能会变得非常小.在深度网络中…
目录 training Neural Network Activation function sigmoid ReLU Preprocessing Batch Normalization 权重初始化 Weight Initialization 交叉验证 Cross Validation 参数更新方法 Parameter Update SGD SGD+momentum Adagrad RMSprop Adam 改善过拟合 Overfiting 模型集成 Model ensemble 正则化 Reg…
import torch from torch import nn import torchvision.datasets as dsets import torchvision.transforms as transforms import matplotlib.pyplot as plt # 超参数 # Hyper Parameters # 训练整批数据多少次, 为了节约时间, 只训练一次 EPOCH = 1 # train the training data n times, to sav…
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出…
Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果.它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.Colaboratory 笔记本存储在 Google 云端硬盘 (https://drive.google.com/) 中,并且可以共享,就如同您使用 Google 文档或表格一样.Colaboratory 可免费使用.本文介绍如何使用 Google CoLaboratory 训练神经网络. 工具链接:https:/…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.9…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.01 LEARNING_RATE_DECAY = 0.99 REGULARAZTION_RATE = 0…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.01 LEARNING_RATE_DECAY = 0.…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE = 0.1 REGULARAZTION_RATE = 0.0001 TR…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.9…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.9…
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数据集.该数据集包含60,000个用于训练的示例和10,000个用于测试的示例.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),值为0到255. 在此示例中,每个图像将转换为float32并归一化为[0,1]. 更多信息请查看链接: http://yann.lecun.com…
最近一个月项目好忙,终于挤出时间把这篇 BP 算法基本思想写完了,公式的推导放到下一篇讲吧. 一.神经网络的代价函数 神经网络可以看做是复杂逻辑回归的组合,因此与其类似,我们训练神经网络也要定义代价函数,之后再使用梯度下降法来最小化代价函数,以此来训练最优的权重矩阵. 1.1 从逻辑回归出发 我们从经典的逻辑回归代价函数引出,先来复习下: \[J(\theta) = \frac{1}{m}\sum\limits_{i = 1}^{m}{[-{y^{(i)}}\log ({h_\theta}({x…
python的易上手和pytorch的动态图特性,使得pytorch在学术研究中越来越受欢迎,但在生产环境,碍于python的GIL等特性,可能达不到高并发.低延迟的要求,存在需要用c++接口的情况.除了将模型导出为ONNX外,pytorch1.0给出了新的解决方案:pytorch 训练模型 - 通过torch script中间脚本保存模型 -- C++加载模型.最近工作需要尝试做了转换,总结一下步骤和遇到的坑. 用torch script把torch模型转成c++接口可读的模型有两种方式:tr…
参加百度的一个竞赛,官方要求把提交的代码测试环境pyorch1.0,于是将自己计算机pytorch升级到1.0. 在ubuntu下用conda install pytorch 命令安装时,效果很差,解决方法是在win下用迅雷下载pip安装包,然后再ubuntu下用pip安装. 下载的是cuda9.0,python3.6对应的版本的,此时要求cudnn版本升级到7.4,方便以后再次安装,这里将cuda9.0,cudnn7.4,pytorch1.0的百度网盘链接放上. 链接:https://pan.…
官网下载Anaconda安装包,按步骤安装即可安装完后,打开DOS,或Anaconda自带的Anaconda Prompt终端查看Anaconda已安装的安装包C:\Users\jiangshan>conda list安装 matplotlibC:\Users\jiangshan>conda install matplotlib设置镜像# 添加Anaconda的清华镜像C:\Users\jiangshan>conda config --add channels https://mirro…
本文翻译节选自1998-Efficient BackProp, Yann LeCun et al.. 4.1 随机VS批训练 每一次迭代, 传统训练方式都需要遍历所有数据集来计算平均梯度. 批训练也同样. 但你也可以使用随机训练的方法: 每次随机选择一个样本$\{Z^t, D^t\}$. 使用它来计算对应的梯度从而更新权值: $W(t+1) = W(t) - \eta \frac{\partial E^t}{\partial W}$ (11). 这种估计梯度的方式是有噪的, 可能不会每次迭代权值…
怎么选取训练神经网络时的Batch size? - 知乎 https://www.zhihu.com/question/61607442 深度学习中的batch的大小对学习效果有何影响? - 知乎 https://www.zhihu.com/question/32673260 训练神经网络时如何确定batch size? - 夕小瑶的文章 - 知乎 https://zhuanlan.zhihu.com/p/27763696 如何理解深度学习分布式训练中的large batch size与lear…
不用相当的独立功夫,不论在哪个严重的问题上都不能找出真理:谁怕用功夫,谁就无法找到真理. —— 列宁 本文主要介绍损失函数.优化器.反向传播.链式求导法则.激活函数.批归一化. 1 经典损失函数 1.1交叉熵损失函数——分类 (1)熵(Entropy) 变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大.log以2为底! H(x) = E[I(xi)] = E[ log(2,1/p(xi)) ] = -∑p(xi)log(2,p(xi)) (i=1,2,..n) (2)交叉熵(Cr…
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p…
问题描述 这几天在用TensorFlow搭建一个神经网络来做一个binary classifier,搭建一个典型的神经网络的基本思路是: 定义神经网络的layers(层)以及初始化每一层的参数 然后迭代: 前向传播(Forward propagation) 计算cost(Compute cost) 反向传播(Backward propagation) 更新参数(Update parameters) 使用训练好的参数去做预测 在训练的时候发现了一个很奇怪的现象:每一次迭代所有的cost都为0.一开…
搭建简单的神经网络:进行回归分析 import torch import torch.nn.functional as F # 包含激励函数 import matplotlib.pyplot as plt # 建立数据集 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1) y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y…
注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”.下面基于与MNIST数据集非常类似的另一个数据集Fashion-MNIST数据集来构建一个卷积神经网络. 0. Fashion-MNIST数据集 MNIST数据集在机器学习算法中被广泛使用,下面这句话能概况其重要性和地位: In fact, MNIST is often the first data…
LeNet 1998年,LeCun提出了第一个真正的卷积神经网络,也是整个神经网络的开山之作,称为LeNet,现在主要指的是LeNet5或LeNet-5,如图1.1所示.它的主要特征是将卷积层和下采样层相结合作为网络的基本机构,如果不计输入层,该模型共7层,包括2个卷积层,2个下采样层,3个全连接层. 图1.1 注:由于在接入全连接层时,要将池化层的输出转换成全连接层需要的维度,因此,必须清晰的知道全连接层前feature map的大小.卷积层与池化层输出的图像大小,其计算如图1.2所示. 图1…