首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[bzoj2893] 集合计数
】的更多相关文章
[bzoj2893] 集合计数
Description 一个有N个元素的集合有2^N 个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 HINT [样例说明] 假设原集合为{A,B,C} 则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}…
【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 229 Solved: 120[Submit][Status][Discuss] Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Inp…
BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = 任意选的方案数-交集\ge 1 的方案数+交集\ge 2的方案数-... \] 交集\(\ge i\)就是说先选出i个元素在交集里,剩下的元素的集合任选 那么就是 \[ \sum_{i=0}^n \binom{n}{i}(2^{2^{n-i}}-1) \] 组合数直接推阶乘和逆元 后面的\(2^{…
bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Inp…
bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Inp…
BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为\(K\),求取法的方案数,答案模\(1000000007\). Input 一行两个整数\(N,K\) Output 一行为答案. HINK 对于\(100\%\)的数据,\(1≤N≤1000000,0≤K≤N\): 设交集拥有元素集合\(S\)的取法方案数为\(f(S)\),有 \[…
bzoj2839 集合计数
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser Logout 捐赠本站 2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 854 Solved: 470 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模…
【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了
再谈容斥原理来两道套路几乎一致的题目[BZOJ2839]集合计数Description一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~)首先我们发现他要求取出的集合是不同的所以通常的套路是容斥令一个东西在保证取出的集合是不同的情况下求出那个时候的答案因为如果按照集合重复来容斥就比较复杂我们考虑交集至少为i的方案数有f(i)=C(n,i)*(2^(2^(n-i…
【BZOJ2839】集合计数(容斥,动态规划)
[BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 题解 比较简单的容斥吧.. 设\(f[i]\)表示至少有\(i\)个相同元素的方案数…
【BZOJ 2839】 2839: 集合计数 (容斥原理)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 399 Solved: 217 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 HI…
【BZOJ2839】集合计数 组合数+容斥
[BZOJ2839]集合计数 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 HINT [样例说明]假设原集合为{A,B,C}则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB…
Bzoj 2839 集合计数 题解
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 495 Solved: 271[Submit][Status][Discuss] Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Inp…
bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) 输入格式 一行两个整数N,K 输出格式 一行为答案. 样例 样例输入 3 2 样例输出 6 数据范围与提示 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC} 数据说明 对于100%的数据,1≤N≤…
51nod 1352:集合计数
1352 集合计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个. Input 第1行:1…
bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点:求出某个集合恰好为k的个数. 转换:求出集合>=k的个数或者<=k的个数 从而使用广义容斥容斥出来答案. 关于>=k个数 如上图可见 又很多重复的地方 而广义容斥也是在这么多重复的地方使用的 而并非严格>=k的个数. 换个说法 >=k的方案数 可能有一些存在重复 但是其特点是&g…
bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) 输入格式 一行两个整数N,K 输出格式 一行为答案. 样例 样例输入 3 2 样例输出 6 数据范围与提示 样例说明 假设原集合为{A,B,C} 则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,AB…
「BZOJ2839」集合计数
「BZOJ2839」集合计数 题目大意: 一个包含 \(n\) 个数的集合有 \(2^n\) 个子集,从这些子集中取出若干个集合(至少一个),使他们的交集的元素个数恰好为 \(k\),求方案数,答案对 \(1e9+7\) 取模. 首先考虑一个很直观的思路:我们钦定 \(k\) 个数是他们的交集,则这样的方案数为 \(\binom{n}{k}\) ,同时,包含这 \(k\) 个数的集合个数为 \(2^{n-k}\) ,每个集合有选与不选两个状态,但依据题意,不能够全部不选,所以这样得到的总方案数…
BZOJ2839:集合计数(容斥,组合数学)
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 HINT [样例说明] 假设原集合为{A,B,C} 则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC} […
51Nod 1352 集合计数 扩展欧几里得
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数.提示:对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个. Input第1行:1个整数T(1<=T<=50000),表示…
●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎么求出这个数组呢?考虑先确定 k个元素(有C(N,k)种方法),那么还剩下 N-k个元素,这剩下的 N-k个元素可以得到 2^(N-k)个集合,然后每个集合可以选或不选,(但不能一个都不选),可以得到 2^(2^(N-k))-1 种选法,每种选法里面的每个集合都加上那以及固定的 k个元素,可以发现这…
BZOJ2839 集合计数 容斥
题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) 输入格式 一行两个整数N,K 输出格式 一行为答案 样例输入: 3 2 样例输出: 6 因为集合中的元素是无序的,所以我们随便选\(k\)个作为交集,最后把答案乘上\(\begin{pmatrix}n\\ k\end{pmatrix}\)就好了.选出来\(k\)个之后,问题转化为…
BZOJ2839集合计数
题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) 题解 假设我们已经确定了这k个元素都是谁,最后再乘上C(n,k)就可以了. 根据容斥原理(二项式反演)可知,答案为选出至少k个的方案数-选出至少k+1个的方案数+选出至少k+2个的方案数... 如何求选出至少x个的方案数,考虑有多少种集合包含x个元素,答案是2n-x(相当于我们已经确定了x个元素…
BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的方案数,答案模 \(1000000007\) . \((1 \le N \le 10^6, 0 \le K \le N)\) 题解 又是一道 裸的 广义容斥定理 还没这道题难qwq 广义容斥定理 (二项式反演) : \[\displaystyle b_k = \sum_{i=k}^n \binom…
2019.02.09 bzoj2839: 集合计数(容斥原理)
传送门 题意简述:对于一个有N个元素的集合在其2^N个子集中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数. 思路:考虑枚举相交的是哪kkk个,有CnkC_n^kCnk种方案,然后考虑剩下的可选可不选一共有22n−k2^{2^{n-k}}22n−k种选法,但是这样选出来的集合可能有其余的数相交,因此我们容斥掉多余的: ans=Cnk∗∑i=0n−kCni22n−k−ians=C_n^k*\sum_{i=0}^{n-k}C_n^i2^{2^{n-k-i}}ans=Cnk…
[BZOJ 2839]集合计数
Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0\leq k\leq n\leq 1000000\) Solution 设 \(f(n)\) 为交集元素大于 \(k\) 的方案数,设 \(g(n)\) 为交集元素等于 \(k\) 的方案数. 容易得到 \[f(k)=\sum_{i=k}^n{i\choose k}g(i)\Rightarrow g…
bzoj 2839 : 集合计数 容斥原理
因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为$k$的方案数为$2^{2^{n-k}}$. 相当于在仅有剩下$n-k$个元素的集合里随便选,最后再往每个集合里塞进这$k$个元素. 然后就是很简单的容斥了. 减去交集至少为k加上其他一个元素的方案数,加上交集至少为k加上其他两个元素的方案数... $$ans=C_{n}^k\times(2^{2^…
51Nod 1352 集合计数(扩展欧几里德)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1352 题目大意: 给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第…
【BZOJ2839】集合计数 容斥原理+组合数
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 HINT [样例说明] 假设原集合为{A,B,C} 则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}…
【bzoj2839】【集合计数】容斥原理+线性求阶乘逆元小技巧
(上不了p站我要死了,侵权度娘背锅) Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 HINT [样例说明] 假设原集合为{A,B,C} 则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,A…
bzoj 2839: 集合计数【容斥原理+组合数学】
首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数-- 在n个数中选i个的方案数是\( C_{n}^{i} \),n种集合的组合方案数为\( 2^n \) 并集至少有i个元素的方案数即为选\( i \)个元素的方案数\( C_{n}^{i} \),乘上剩下\( n-i \)个元素任意组合的方案数\( 2^{2^{n-i}-1} \) 然后乘上容斥系数\( (-1)^{i-k} \),再乘上在并集…