深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型…
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准的梯度下降算法. 基本思想:计算梯度的指数加权平均数并利用该梯度更新你的权重 假设图中是你的成本函数,你需要优化你的成本函数函数形象如图所示.其中红点所示就是你的最低点.使用常规的梯度下降方法会有摆动这种波动减缓了你训练模型的速度,不利于使用较大的学习率,如果学习率使用过大则可能会偏离函数的范围.为…
Coursera吴恩达<优化深度神经网络>课程笔记(2)-- 优化算法 深度机器学习中的batch的大小 深度机器学习中的batch的大小对学习效果有何影响? 1. Mini-batch gradient descent SGD VS BGD VS MBGD 3. 指数加权平均(Exponentially weighted averages) 这种滑动平均算法称为指数加权平均(exponentially weighted average)其一般形式为: 值决定了指数加权平均的天数,近似表示为:…
转自: https://zhuanlan.zhihu.com/p/22252270    ycszen 另可参考: https://blog.csdn.net/llx1990rl/article/details/44001921   深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)   前言 (标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了. SGD…
SGD 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了.现在的SGD一般都指mini-batch gradient descent. SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: gt=∇θt−1f(θt−1) Δθt=−η∗gt…
http://www.cnblogs.com/bonelee/p/8528863.html 积神经网络的参数优化方法——调整网络结构是关键!!!你只需不停增加层,直到测试误差不再减少. 积神经网络(CNN)的参数优化方法 from:http://blog.csdn.net/u010900574/article/details/51992156   著名: 本文是从 Michael Nielsen的电子书Neural Network and Deep Learning的深度学习那一章的卷积神经网络…
参考: https://blog.csdn.net/u010089444/article/details/76725843 1. SGD Batch Gradient Descent 在每一轮的训练过程中,Batch Gradient Descent算法用整个训练集的数据计算cost fuction的梯度,并用该梯度对模型参数进行更新: 优点: cost fuction若为凸函数,能够保证收敛到全局最优值:若为非凸函数,能够收敛到局部最优值 缺点: 由于每轮迭代都需要在整个数据集上计算一次,所以…
[转载]机器学习优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam https://blog.csdn.net/u010089444/article/details/76725843 这篇博客格式不好直接粘贴,就不附原文了. 有几个点可以注意下,原文没有写的很清楚: 优化方法的作用是什么? 可以说,没有优化方法,机器学习模型一般一样可以执行,所以说它并不是必须的.但是优化方法可以动态调整学习率以及影响迭代中参数调整的方向和幅度,可以加速收敛,是对原方法的一种优化.…
Optimization 随机梯度下降(SGD): 当损失函数在一个方向很敏感在另一个方向不敏感时,会产生上面的问题,红色的点以“Z”字形梯度下降,而不是以最短距离下降:这种情况在高维空间更加普遍. SGD的另一个问题:损失函数容易卡在局部最优或鞍点(梯度为0)不再更新.在高维空间鞍点更加普遍 当模型较大时SGD耗费庞大计算量,添加随机均匀噪声时SGD需要花费大量的时间才能找到极小值. SGD+Momentum: 带动量的SGD,基本思想是:保持一个不随时间变化的速度,并将梯度估计添加到这个速度…
参考自: https://zhuanlan.zhihu.com/p/22252270 常见的优化方法有如下几种:SGD,Adagrad,Adadelta,Adam,Adamax,Nadam 1. SGD SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: 缺点: 1. 选择合适的learning rate 较难,对所有参数更新使用同样的learning rate. 2. 容易收敛到局部最优,并且在某些情况下可能被困在鞍点. 2. Momentum…