Spark 优化器 ML的论文】的更多相关文章

http://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf http://www.vldb.org/pvldb/vol4/p539-neumann.pdf https://arxiv.org/pdf/1310.5426v2.pdf…
不用相当的独立功夫,不论在哪个严重的问题上都不能找出真理:谁怕用功夫,谁就无法找到真理. —— 列宁 本文主要介绍损失函数.优化器.反向传播.链式求导法则.激活函数.批归一化. 1 经典损失函数 1.1交叉熵损失函数——分类 (1)熵(Entropy) 变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大.log以2为底! H(x) = E[I(xi)] = E[ log(2,1/p(xi)) ] = -∑p(xi)log(2,p(xi)) (i=1,2,..n) (2)交叉熵(Cr…
Spark SQL是Spark最新和技术最为复杂的组件之一.它支持SQL查询和新的DataFrame API.Spark SQL的核心是Catalyst优化器,它以一种新颖的方式利用高级编程语言特性(例如Scala的模式匹配和quasiquotes)来构建可扩展查询优化器. 我们最近发布了一篇关于Spark SQL的论文,该论文将出现在SIGMOD 2015(由Davies Liu,Joseph K. Bradley,Xiangrui Meng,Tomer Kaftan,Michael J. F…
Apache Spark 2.2最近引入了高级的基于成本的优化器框架用于收集并均衡不同的列数据的统计工作 (例如., 基(cardinality).唯一值的数量.空值.最大最小值.平均/最大长度,等等)来改进查询类作业的执行计划.均衡这些作业帮助Spark在选取最优查询计划时做出更好决定.这些优化的例子包括在做hash-join时选择正确的一方建hash,选择正确的join类型(广播hash join和全洗牌hash-join)或调整多路join的顺序,等等) 在该博客中,我们将深入讲解Spar…
我们有时会遇到一些坑,要不填平,要不绕过.这里为大家介绍一个相关SQL Server优化器方面的特性导致内存授予的相关BUG,及相关解决方式,也顺便回答下邹建同学的相关疑问. 问题描述 一个简单的查询消耗了匪夷所思的内存.(邹建同学发现的) 原文链接 Code create table test_mem ( id ,) primary key, itemid int not null, date datetime not null, str1 varchar(max) null ) INSERT…
我们都知道,一条SQL语句提交给优化器会产生相应的执行计划然后执行输出结果,但他的执行计划是如何产生的呢?这可能是关系型数据库最复杂的部分了.这里我为大家介绍一个有关SQL Server优化器的特性-隐式谓词,并简单介绍在此特性下如何根据场景控制优化器的行为. 在这里我通过一个简单的实例来给大家说明下. code CREATE TABLE T1 (A INT, B INT) CREATE TABLE T2 (A INT, B INT) set showplan_text on SELECT *…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论文中给出了常用优化器的比较,今天来学习一下:https://arxiv.org/pdf/1609.04747.pdf 本文将梳理: 每个算法的梯度更新规则和缺点 为了应对这个不足而提出的下一个算法 超参数的一般设定值 几种算法的效果比较 选择哪种算法 0.梯度下降法深入理解 以下为个人总结,如有错误…
查询优化器最主要的工作就是接受输入的SQL以及各种环境参数.配置参数,生成合适的SQL执行计划(Execution Plan). Query Optimizer一共经历了两个历史阶段: RBO: Rule-Based Optimization 基于规则的优化器 CBO: Cost-Based Optimization 基于代价的优化器 关于RBO与CBO,一个形象的比喻:大数据时代到来以前,做生意或许凭借多年累计 下来的经验规则(RBO)就能够很好的做出决策,跟随市场变化.但是大数据时代,如果做…
SQL优化是我们经常会遇到的问题,无论你是专职的数据分析人员还是全栈开发大神或者是CURD搬运工. 我们在工作中经常会听到这样的声音:“查询慢?加个索引吧”.虽然加索引并不一定能解决问题,但是这体现了SQL优化的思想. 而数据库主要由三部分组成,分别是解析器.优化器和执行引擎. 其执行逻辑是我们输入的SQL语句通过解析器解析成关系表达式,通过优化器把关系表达式转换成执行计划,最终通过执行引擎进行执行.所以优化器在很大程度上决定了一个系统的性能.优化器的作用就好比找到两点之间的最短路径. 上篇文章…
文章导读: 什么是RBO? 什么是CBO? 我们在工作中经常会听到这样的声音:"SQL查询慢?你给数据库加个索引啊".虽然加索引并不一定能解决问题,但是这初步的体现了SQL优化的思想. 而数据库主要由三部分组成,分别是解析器.优化器和执行引擎. 其执行逻辑是我们输入的SQL语句通过解析器解析成关系表达式,通过优化器把关系表达式转换成执行计划,最终通过执行引擎进行执行.所以优化器在很大程度上决定了一个系统的性能.优化器的作用就好比找到两点之间的最短路径. 上篇文章我们提到了Calcite…
一.TensorFlow中的优化器 tf.train.GradientDescentOptimizer:梯度下降算法 tf.train.AdadeltaOptimizer tf.train.AdagradOptimizer tf.train.MomentumOptimizer:动量梯度下降算法 tf.train.AdamOptimizer:自适应矩估计优化算法 tf.train.RMSPropOptimizer tf.train.AdagradDAOptimizer tf.train.FtrlO…
  spark优化:在一定范围之内,增加资源与性能的提升是成正比的. 因此,       一个cpu core  执行一个task线程. task数: 若有 cpu core 2个.num-executor 2个  那么task有4个 公式:task =  num-executor * cpu core .   cpu core  共有50个.一个程序一般设置为总数量的1/3或1/2   driver : 分配task 到每个work                        从yarn申请…
目标 SparkSQL 是什么 SparkSQL 如何使用 Table of Contents 1. SparkSQL 是什么 1.1. SparkSQL 的出现契机 1.2. SparkSQL 的适用场景 2. SparkSQL 初体验 2.3. RDD 版本的 WordCount 2.2. 命令式 API 的入门案例 2.2. SQL 版本 WordCount 3. [扩展] Catalyst 优化器 3.1. RDD 和 SparkSQL 运行时的区别 3.2. Catalyst 4. D…
高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使用 TensorFlow 的梯度下降优化器及其变体. 按照损失函数的负梯度成比例地对系数(W 和 b)进行更新.根据训练样本的大小,有三种梯度下降的变体: Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度.该方法可能很慢并且难以…
文章来自公众号[机器学习炼丹术] 1 stochastic weight averaging(swa) 随机权值平均 这是一种全新的优化器,目前常见的有SGB,ADAM, [概述]:这是一种通过梯度下降改善深度学习泛化能力的方法,而且不会要求额外的计算量,可以用到Pytorch的优化器中. 随机权重平均和随机梯度下降SGD相似,所以我一般吧SWa看成SGD的进阶版本. 1.1 原理与算法 swa算法流程: [怎么理解]: 对\(w_{swa}\)做了一个周期为c的滑动平均.每迭代c次,就会对这个…
转载地址 https://www.jianshu.com/p/aebcaf8af76e 基于随机梯度下降(SGD)的优化算法在科研和工程的很多领域里都是极其核心的.很多理论或工程问题都可以转化为对目标函数进行最小化的数学问题. 按吴恩达老师所说的,梯度下降(Gradient Descent)就好比一个人想从高山上奔跑到山谷最低点,用最快的方式(steepest)奔向最低的位置(minimum). SGD基本公式 动量(Momentum) 参考链接:https://distill.pub/2017…
数据库系统发展历史 数据库系统产生于20世纪60年代中期,至今有近50多年的历史,其发展经历了三代演变,造就了四位图灵奖得主,发展成为一门计算机基础学科,带动了一个巨大的软件产业. 数据库系统是操作系统之上最重要的基础设施之一,被称为软件产业的常青树,特别是它所支撑起来的大数据.人工智能应用,更是发展迅猛. 面对发展快速的数据库领域,以及人类所拥有的数据量爆发式增长,如何对海量数据进行管理.分析.挖掘便变得尤为重要.SQL优化器正是为了解决以上问题而诞生的. 查询优化器简介 SQL优化器,其中最…
[源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0x01 模型构造 1.1 Module 1.2 成员变量 1.3 _parameters 1.3.1 构建 1.3.2 归类 1.3.3 获取 1.4 Linear 1.4.1 使用 1.4.2 定义 1.4.3 解释 0x02 Optimizer 基类 2.1 初始化 2.2 添加待优化变量 2.…
[源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之中的优化器 2.1 流程 2.2 使用 0x03 DDP 之中的优化器 3.1 流程 3.2 优化器状态 3.3 使用 0x04 Horovod 的优化器 4.1 hook 同步梯度 4.1.1 注册 hooks 4.1.2 归并梯度 4.1.2.1 MPI 函数 4.1.2.2 原理图 4.2 s…
[源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 基本用法 2.2 将模型并行应用到现有模块 2.3 问题与方案 2.3.1 目前状况 2.3.2 解决方案 2.4 通过流水线输入加速 0x03 分布式问题和方案 3.1 思路 3.2 PyTorch 的思路 3.2.1 四大天王 3.2.2 逻辑关系 0x04 PyTorch 分布式优化器 4.…
分享嘉宾:张建 PingCAP TiDB优化器与执行引擎技术负责人 编辑整理:Druid中国用户组第6次大数据MeetUp 出品平台:DataFunTalk 导读: 本次报告张老师主要从原理上带大家深入了解 TiDB SQL 优化器中的关键模块,比如应用一堆逻辑优化规则的逻辑优化部分,基于代价的物理优化部分,还有和代价估算密切相关的统计信息等. 本文将从以下几个方面介绍:首先讲一下TiDB的整体架构,接下来就是优化器的两个比较重要的模块,一个是SQL优化,做执行计划生成:另一个模块就是统计信息模…
未完成!!!!!! 神经网络的训练主要是通过优化损失函数来更新参数,而面对庞大数量的参数的更新,优化函数的设计就显得尤为重要,下面介绍一下几种常用的优化器及其演变过程: [先说明一下要用到符号的含义]: 损失函数里一般有两种参数,一种是控制输入信号量的权重(Weight, 简称$ w $),另一种是调整函数与真实值距离的偏差(Bias,简称$ b $),在这里我们将参数统一表示为$ \theta_t \in R^{d} $,损失函数为$J(\theta)$,学习率为$\eta$ .损失函数关于当…
转自http://www.jb51.net/article/67007.htm,感谢博主 本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序.表结构和数据准备参考本文最后部分"测试环境".这里主要介绍MySQL优化器的主要执行流程,而不是介绍一个优化器的各个组件(这是另一个话题). 我们知道,MySQL优化器只有两个自由度:顺序选择:单表访问方式:这里将详细剖析下面的SQL,看看MySQL优化器如何做出每一步的选择. explain select * from emplo…
优化器profile 在MySQL 中,慢查询日志是经常作为我们优化数据库的依据,那在MongoDB 中是否有类似的功能呢?答案是肯定的,那就是MongoDB Database Profiler. 1.开启profiling功能 有两种方式可以控制 Profiling 的开关和级别,第一种是直接在启动参数里直接进行设置.启动MongoDB 时加上–profile=级别 即可.也可以在客户端调用db.setProfilingLevel(级别) 命令来实时配置,Profiler 信息保存在syste…
RBO和CBO的基本概念 Oracle数据库中的优化器又叫查询优化器(Query Optimizer).它是SQL分析和执行的优化工具,它负责生成.制定SQL的执行计划.Oracle的优化器有两种,基于规则的优化器(RBO)与基于代价的优化器(CBO) RBO: Rule-Based Optimization 基于规则的优化器 CBO: Cost-Based Optimization 基于代价的优化器 RBO自ORACLE 6以来被采用,一直沿用至ORACLE 9i. ORACLE 10g开始,…
Oracle优化器介绍 本文讲述了Oracle优化器的概念.工作原理和使用方法,兼顾了Oracle8i.9i以及最新的10g三个版本.理解本文将有助于您更好的更有效的进行SQL优化工作. RBO优化器 RBO是一种基于规则的优化器,随着CBO优化器的逐步发展和完善,在最新的10g版本中Oracle已经彻底废除了RBO.正在使用Oracle8i或9i的人们或多或少的都会碰到RBO,因此在详细介绍CBO之前,我们有必要简单回顾一下古老的RBO优化器. 在RBO中Oracle根据可用的访问路径和访问路…
首先看一下MySQL追踪优化器的典型用法: 打开:SET optimizer_trace="enabled=on"; 查询优化器的信息:SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE; 关闭:SET optimizer_trace="enabled=off"; 默认情况下是关闭的,要使用的时候一定要打开这个优化器. 看一下参数: enabled:打开或者关闭跟踪器 one_line:如果ON的话将会以JOSN的存储方…
前段时间我写的文章SQL Server 隐式转换引发的躺枪死锁 中有的朋友评论回复说在SQL2008R2测试时并未出现死锁,自己一测果然如此,因此给大家带来的疑惑表示抱歉,这里我就解释下其原因. 回顾:SQL2012中发生死锁的原因已经向大家解释了,因为隐式转换造成的表扫描扩大了锁规模.但在SQL2008R2中就未有同样的现象出现,很显然锁规模没有扩大,原因在于SQL Server的优化器为我们做了额外的事情-动态检索 动态检索:基于索引查找的优势,SQL Server(部分版本)会尝试将一些情…
1.运行以下脚本,计算当前优化器统计信息和AWR快照表占用sysaux的空间 SQL> conn / as sysdba SQL> @?/rdbms/admin/awrinfo.sql 2.检查优化器统计信息直方图表中的信息的有效天数 SQL> select systimestamp - min(savtime) from sys.wri$_optstat_histgrm_history; 3.purge统计信息(修改有效天数) SQL> exec dbms_stats.purge…